Recycling: Making Sense out of the Cents

Last week I was reading the European Federation of Waste Management and Environmental Services (FEAD) assessment that the EU will need to invest up to $12 Billion (€10 Billion) to innovate and expand the separate collection, sorting and recycling capacity to reach the EU landfill diversion targets for plastic packaging.

I had to pause and reread the figure; $12,000,000,000??

I understand the desire to increase recycling, but at what cost do we stop pushing blindly forward and begin to compare the alternatives?

Let’s just look at the numbers:

The latest report from PlasticsEurope states that there was a total of 16.7 million tonnes of plastic packaging waste in the EU. 6.8 million tonnes of it was recycled. That leaves 9.9 million tonnes that would still need to be recycled to reach the proposed 100% recycling of plastic packaging. According to FEAD it will cost up to $12 billion to build the infrastructure to collect, sort and recycle this 9.9 million tonnes using traditional recycling methods.

This breaks down to an annual cost of $1200 per tonne to recycle this material. Even if they were to expand that expense over 10 years of recycling plastic packaging, it would still cost $120 per tonne.

As an alternative, let’s calculate the numbers when designing plastic packaging with the existing infrastructure in mind. Most plastic packaging is discarded into a landfill. Modern technology allows for plastics to be converted into biogas within these landfills. Subsequently, the landfills are currently harnessing this biogas for auto fuel and energy. The result is recycling waste plastic by conversion to energy.

Sounds like a simple solution, but do the numbers add up?

Incorporating the technology to recycle plastics to biogas costs an average of $120 per tonne. The infrastructure and collection are already in place so there is no additional expense. The value of the biogas energy produced is $550 per tonne. This leaves a net income of $430 per tonne of plastic packaging. For 9.9 million tonnes of plastic packaging the income would be $4,300,000,000 each year. Expanding that over 10 years would be a net benefit of $43 Billion.

So, the question: Is it better to spend $12 billion for traditional recycling or earn $43 billion by combining traditional recycling with energy recycling?

(And this doesn’t even begin to address the fact that LCA analysis shows that most plastic recycling is not environmentally beneficial, nor can plastics be effectively recycled indefinitely. But, that is a subject for another article….)

The Business Side of Green

We recently had the opportunity to spend an hour with a fantastic host and avid environmentalist, Peter Arpin, on The Business Side of Green. The topics ranged from how to improve recycling, what plastics belong in composting and how plastics increase renewable energy. There was even discussion about why the Circular Economy can be at odds with sustainability and how to bring these two methodologies into a synergistic solution. Throughout the show was an overarching theme of ‘thinking differently’ about plastic.

If you make plastics, use plastics or think about plastics (we all do!), this is a must listen to episode.

Listen Now

If you would like to listen to more from Peter Arpin and the Business Side of Green:

Click Here

 

 

The Stupidity in Sustainability

In a recent article by Laura Parker, “You Can Help Turn the Tide on Plastic. Here’s How,” 6 feeble recommendations are provided for consumers, none of which will turn any tide on the plastic pollution problem.  I understand Laura Parker may not be an expert in this field, but when it comes to the sustainable management of plastics, can we stop the stupidity?

For example, Laura Parker begins with the blanket statement, “The industry is debating on what biodegradable means.”  Really, what industry?  If Sustainable Packaging is your expertise and you do not understand the difference between [Anaerobic] Biodegradation, Compostable, Degradable and how today’s waste is being Managed, you might be out of your depth and in need of a career change.  For those of us in the field of sustainability there is no debate on what biodegradability means as this is a scientific process with industry testing standards structured to test and validate biodegradation in these types of environments.

Or this drivel, “Biodegradables don’t live up to their promise, for example, in the dark, oxygen-free environment of a commercial landfill…”  The general term means little, but when backed by scientific data to support the claim, like internationally recognized ASTM D5526 testing standards, guess what?  It does biodegrade in landfills (ANAEROBICALLY MANAGED).

When it comes to the management of our waste, the “open environment” should never be an acceptable option or target for discard – do not litter, remember?  Also, aiming and designing for Industrial Composting is irrational, sacrifice the entire supply chain and product performance, for what?  Plastics don’t end-up there and they do not make compost, where’s the value?

Then there’s the “Circular Economy” theory, which makes sense, but let’s be clear, the “New Plastics Economy” does not – at all!  Nearly 50 years of a massive effort to propagate and encourage the recycling of plastics and today the industry is in complete collapse.  Yet, with no shame, companies double-down on this nonsense, telling consumers that its plastic packaging will be “100% recyclable/reusable” in 7 years!  The 2 biggest “BS”-ables in Sustainable Packaging and the root cause of why the recycling industry has been destroyed – but Nero keeps fiddling!  Why do we insist on science and data to back up biodegradation, but use no science and data to back up plastic recycling?

What needs to be achieved is a Sustainable Plastics Economy.  Every plastic application cannot be recycled into another plastic application and plastics cannot be recycled indefinitely. However, if “Zero-Waste” is the goal, value must be derived from the entire lifecycle of the application, not just material recycling, but end-of-life and chemical recycling as well, ensuring conversion into useful Energy.  This happens by taking the contamination factor out of the primary method in which plastic waste is discarded and can be managed.

Sustainable Packaging 101: Stop blaming consumers and take accountability.  Companies need to define the primary MANAGED-WASTE method for its products and packaging and make sure (using science and data) that it works in that system.

The missing link between the Circular Economy and Sustainability

For those of us in the field of sustainability, the Circular Economy is not a new concept. However, when it comes to the Circular Economy and plastics too often there is a misunderstanding of how the two relate. The Circular Economy is used as simply a re-branding of recycling. The idea that recycling will solve the plastics dilemma is a misguided direction that has been pushed for decades. To achieve a sustainable plastics economy, we must understand the Circular Economy and refocus the vision.

The Sustainable Plastics Economy is a guide, written for those wanting to implement the Circular Economy within the plastics industry, providing a deeper understanding of the Circular Economy, and a vision beyond simply recycling. It is a method to replicate the efficiency of nature as intended in the Circular Economy.

The Sustainable Plastics Economy integrates a complete Circular Economy approach with the unique challenges of plastic. It includes the concepts of Sustainable Materials Management by addressing the full life cycle impact of various plastic options such as, what types of materials to select, where to source raw ingredients, waste infrastructures, and customary discard scenarios. The Sustainable Plastics Economy creates a dynamic, data driven approach to create a system designed to replicate and ultimately integrate into nature, as intended in the Circular Economy precept.

The link below allows for a complimentary download of the Sustainable Plastics Economy guidebook. This guide provides an overview of the Circular Economy concepts and introduces the Sustainable Plastics Economy. Also included is a five-step process for organizations to implement the Sustainable Plastics Economy in a practical and pragmatic method.

Download a complimentary copy of the The Sustainable Plastics Economy here:

The Sustainable Plastics Economy Guidebook

 

 

The Reign of Recycling

IF you live in the United States, you probably do some form of recycling. It’s likely that you separate paper from plastic and glass and metal. You rinse the bottles and cans, and you might put food scraps in a container destined for a composting facility. As you sort everything into the right bins, you probably assume that recycling is helping your community and protecting the environment. But is it? Are you in fact wasting your time?

In 1996, I wrote a long article for The New York Times Magazine arguing that the recycling process as we carried it out was wasteful. I presented plenty of evidence that recycling was costly and ineffectual, but its defenders said that it was unfair to rush to judgment. Noting that the modern recycling movement had really just begun just a few years earlier, they predicted it would flourish as the industry matured and the public learned how to recycle properly.

So, what’s happened since then? While it’s true that the recycling message has reached more people than ever, when it comes to the bottom line, both economically and environmentally, not much has changed at all.

Despite decades of exhortations and mandates, it’s still typically more expensive for municipalities to recycle household waste than to send it to a landfill. Prices for recyclable materials have plummeted because of lower oil prices and reduced demand for them overseas. The slump has forced some recycling companies to shut plants and cancel plans for new technologies. The mood is so gloomy that one industry veteran tried to cheer up her colleagues this summer with an article in a trade journal titled, “Recycling Is Not Dead!”

While politicians set higher and higher goals, the national rate of recycling has stagnated in recent years. Yes, it’s popular in affluent neighborhoods like Park Slope in Brooklyn and in cities like San Francisco, but residents of the Bronx and Houston don’t have the same fervor for sorting garbage in their spare time.

The future for recycling looks even worse. As cities move beyond recycling paper and metals, and into glass, food scraps and assorted plastics, the costs rise sharply while the environmental benefits decline and sometimes vanish. “If you believe recycling is good for the planet and that we need to do more of it, then there’s a crisis to confront,” says David P. Steiner, the chief executive officer of Waste Management, the largest recycler of household trash in the United States. “Trying to turn garbage into gold costs a lot more than expected. We need to ask ourselves: What is the goal here?”

Recycling has been relentlessly promoted as a goal in and of itself: an unalloyed public good and private virtue that is indoctrinated in students from kindergarten through college. As a result, otherwise well-informed and educated people have no idea of the relative costs and benefits.

They probably don’t know, for instance, that to reduce carbon emissions, you’ll accomplish a lot more by sorting paper and aluminum cans than by worrying about yogurt containers and half-eaten slices of pizza. Most people also assume that recycling plastic bottles must be doing lots for the planet. They’ve been encouraged by the Environmental Protection Agency, which assures the public that recycling plastic results in less carbon being released into the atmosphere.

But how much difference does it make? Here’s some perspective: To offset the greenhouse impact of one passenger’s round-trip flight between New York and London, you’d have to recycle roughly 40,000 plastic bottles, assuming you fly coach. If you sit in business- or first-class, where each passenger takes up more space, it could be more like 100,000.

Even those statistics might be misleading. New York and other cities instruct people to rinse the bottles before putting them in the recycling bin, but the E.P.A.’s life-cycle calculation doesn’t take that water into account. That single omission can make a big difference, according to Chris Goodall, the author of “How to Live a Low-Carbon Life.” Mr. Goodall calculates that if you wash plastic in water that was heated by coal-derived electricity, then the net effect of your recycling could be more carbon in the atmosphere.

To many public officials, recycling is a question of morality, not cost-benefit analysis. Mayor Bill de Blasio of New York declared that by 2030 the city would no longer send any garbage to landfills. “This is the way of the future if we’re going to save our earth,” he explained while announcing that New York would join San Francisco, Seattle and other cities in moving toward a “zero waste” policy, which would require an unprecedented level of recycling.

The national rate of recycling rose during the 1990s to 25 percent, meeting the goal set by an E.P.A. official, J. Winston Porter. He advised state officials that no more than about 35 percent of the nation’s trash was worth recycling, but some ignored him and set goals of 50 percent and higher. Most of those goals were never met and the national rate has been stuck around 34 percent in recent years.

“It makes sense to recycle commercial cardboard and some paper, as well as selected metals and plastics,” he says. “But other materials rarely make sense, including food waste and other compostables. The zero-waste goal makes no sense at all — it’s very expensive with almost no real environmental benefit.”

One of the original goals of the recycling movement was to avert a supposed crisis because there was no room left in the nation’s landfills. But that media-inspired fear was never realistic in a country with so much open space. In reporting the 1996 article I found that all the trash generated by Americans for the next 1,000 years would fit on one-tenth of 1 percent of the land available for grazing. And that tiny amount of land wouldn’t be lost forever, because landfills are typically covered with grass and converted to parkland, like the Freshkills Park being created on Staten Island. The United States Open tennis tournament is played on the site of an old landfill — and one that never had the linings and other environmental safeguards required today.

Though most cities shun landfills, they have been welcomed in rural communities that reap large economic benefits (and have plenty of greenery to buffer residents from the sights and smells). Consequently, the great landfill shortage has not arrived, and neither have the shortages of raw materials that were supposed to make recycling profitable.

With the economic rationale gone, advocates for recycling have switched to environmental arguments. Researchers have calculated that there are indeed such benefits to recycling, but not in the way that many people imagine.

Most of these benefits do not come from reducing the need for landfills and incinerators. A modern well-lined landfill in a rural area can have relatively little environmental impact. Decomposing garbage releases methane, a potent greenhouse gas, but landfill operators have started capturing it and using it to generate electricity. Modern incinerators, while politically unpopular in the United States, release so few pollutants that they’ve been widely accepted in the eco-conscious countries of Northern Europe and Japan for generating clean energy.

Moreover, recycling operations have their own environmental costs, like extra trucks on the road and pollution from recycling operations. Composting facilities around the country have inspired complaints about nauseating odors, swarming rats and defecating sea gulls. After New York City started sending food waste to be composted in Delaware, the unhappy neighbors of the composting plant successfully campaigned to shut it down last year.
Sign Up for the Opinion Today Newsletter

THE environmental benefits of recycling come chiefly from reducing the need to manufacture new products — less mining, drilling and logging. But that’s not so appealing to the workers in those industries and to the communities that have accepted the environmental trade-offs that come with those jobs.

Nearly everyone, though, approves of one potential benefit of recycling: reduced emissions of greenhouse gases. Its advocates often cite an estimate by the E.P.A. that recycling municipal solid waste in the United States saves the equivalent of 186 million metric tons of carbon dioxide, comparable to removing the emissions of 39 million cars.

According to the E.P.A.’s estimates, virtually all the greenhouse benefits — more than 90 percent — come from just a few materials: paper, cardboard and metals like the aluminum in soda cans. That’s because recycling one ton of metal or paper saves about three tons of carbon dioxide, a much bigger payoff than the other materials analyzed by the E.P.A. Recycling one ton of plastic saves only slightly more than one ton of carbon dioxide. A ton of food saves a little less than a ton. For glass, you have to recycle three tons in order to get about one ton of greenhouse benefits. Worst of all is yard waste: it takes 20 tons of it to save a single ton of carbon dioxide.

Once you exclude paper products and metals, the total annual savings in the United States from recycling everything else in municipal trash — plastics, glass, food, yard trimmings, textiles, rubber, leather — is only two-tenths of 1 percent of America’s carbon footprint.

As a business, recycling is on the wrong side of two long-term global economic trends. For centuries, the real cost of labor has been increasing while the real cost of raw materials has been declining. That’s why we can afford to buy so much more stuff than our ancestors could. As a labor-intensive activity, recycling is an increasingly expensive way to produce materials that are less and less valuable.

Recyclers have tried to improve the economics by automating the sorting process, but they’ve been frustrated by politicians eager to increase recycling rates by adding new materials of little value. The more types of trash that are recycled, the more difficult it becomes to sort the valuable from the worthless.

In New York City, the net cost of recycling a ton of trash is now $300 more than it would cost to bury the trash instead. That adds up to millions of extra dollars per year — about half the budget of the parks department — that New Yorkers are spending for the privilege of recycling. That money could buy far more valuable benefits, including more significant reductions in greenhouse emissions.

So what is a socially conscious, sensible person to do?

It would be much simpler and more effective to impose the equivalent of a carbon tax on garbage, as Thomas C. Kinnaman has proposed after conducting what is probably the most thorough comparison of the social costs of recycling, landfilling and incineration. Dr. Kinnaman, an economist at Bucknell University, considered everything from environmental damage to the pleasure that some people take in recycling (the “warm glow” that makes them willing to pay extra to do it).

He concludes that the social good would be optimized by subsidizing the recycling of some metals, and by imposing a $15 tax on each ton of trash that goes to the landfill. That tax would offset the environmental costs, chiefly the greenhouse impact, and allow each municipality to make a guilt-free choice based on local economics and its citizens’ wishes. The result, Dr. Kinnaman predicts, would be a lot less recycling than there is today.

Then why do so many public officials keep vowing to do more of it? Special-interest politics is one reason — pressure from green groups — but it’s also because recycling intuitively appeals to many voters: It makes people feel virtuous, especially affluent people who feel guilty about their enormous environmental footprint. It is less an ethical activity than a religious ritual, like the ones performed by Catholics to obtain indulgences for their sins.

Religious rituals don’t need any practical justification for the believers who perform them voluntarily. But many recyclers want more than just the freedom to practice their religion. They want to make these rituals mandatory for everyone else, too, with stiff fines for sinners who don’t sort properly. Seattle has become so aggressive that the city is being sued by residents who maintain that the inspectors rooting through their trash are violating their constitutional right to privacy.

It would take legions of garbage police to enforce a zero-waste society, but true believers insist that’s the future. When Mayor de Blasio promised to eliminate garbage in New York, he said it was “ludicrous” and “outdated” to keep sending garbage to landfills. Recycling, he declared, was the only way for New York to become “a truly sustainable city.”

But cities have been burying garbage for thousands of years, and it’s still the easiest and cheapest solution for trash. The recycling movement is floundering, and its survival depends on continual subsidies, sermons and policing. How can you build a sustainable city with a strategy that can’t even sustain itself?

Read original NY Times article written by John Tierney https://www.nytimes.com/2015/10/04/opinion/sunday/the-reign-of-recycling.html?mwrsm=Email

Treatment or Cure?

In medicine, there is an age-old debate surrounding whether physicians and researchers should focus on treating the symptoms of an ailment or creating a cure. From a business and shareholder perspective, treating symptoms is preferred because it ensures continued revenues and much higher shareholder return; whereas the patient would much rather obtain the cure. Unfortunately, the decision of where to spend money and marketing is most often determined by those who seek financial gain – the shareholders.

Plastic is often portrayed as the scourge of our planet, not a day passes without an email, article or news brief talking about plastic waste. Most often, the complaint about plastic surrounds plastic waste (it is seldom to hear complaints about the cost, performance or use of plastics), and the solution promoted seems to constantly revolve around recycling. Recycling is touted as the end-all method to prevent plastic waste.

However, is it possible that recycling is just a method to treat the symptoms of plastic waste?

Consider for a moment that the disease is plastic waste. The cure is to eliminate the waste of used plastic – this means that any solution must definitively address the end-of-life aspect of plastic.

Ever wondered why products using recycled plastic only have a percentage of recycled plastic, why recycled resin has a brownish haze or why plastic is down-cycled rather than recycled?

To recycle plastic, it must be melted and then reheated again to form a product. Heat is kryptonite to plastic, making it weaker, more brittle and increased discoloration. Within 3-4 times of reheating the plastic, it becomes useless and must be discarded as waste. Every ounce of plastic will eventually be discarded – contributing to the disease of plastic waste.

Recycling is simply a method of treating the symptoms, to create a perception of improvement without ever addressing the fact that all the plastic will eventually be discarded as waste regardless of recycle rates. We will not cure this disease until we look at the final discard of plastic and how to remove it completely after use.

So, why do we continue to spend billions each year on treating the symptom rather than focusing on the cure? Why all the marketing and pressure to focus only on recycling?

Makes one wonder who the shareholders are…..

Modern technology and chemistry provides options for converting discarded plastic into energy and fuel – without incineration. This removes the plastic completely from the environment while creating value for communities. Perhaps it is time to cure this problem rather than simply dealing with the symptoms?

FMCG’s, please THINK DIFFERENTLY

The latest estimates indicate that 8300 million metric tons (Mt) of plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated. Despite the efforts of the last 40 years, only 9% of this material is getting recycled. The environmental impact of plastic pollution is wreaking havoc and if smarter decisions are not made regarding how this material is being managed the effects will certainly be catastrophic for the entire ecosystem.

We have a plastic pollution problem, not a plastic sourcing problem. It begins in design, not disposal. Whether the resin is petroleum based or bio-based, if that complex molecule that’s been created does not perform in accordance with the common method in which this waste is effectively and customarily managed, especially when the returns contribute to lowering CO2, increasing clean energy recovery and eliminating plastic waste as an environmental pollutant, then the sincerity of the entire sustainability platform should be questioned.

The vast majority of this plastic pollution is coming from FMCG companies that rely on single-use/non-recyclable packaging to deliver goods. The packaging provides unparalleled performance and value in achieving this purpose. However, the post-consumer repercussions are disastrous. Consumers are being used as scapegoats, blamed for low recycling rates and even buying the product in the first place, but most consumers are dutifully ensuring this material is in fact being sent to a managed waste environment. But sustainability professionals within FMCG companies fail to recognize and capitalize on this asset that sits under their proverbial noses.

This problem must be viewed through a different lens and nothing is more critical in accomplishing this then getting a handle on how today’s waste is actually managed and the intrinsic value propositions that exist in complying with these infrastructures.

Does recycling cause mental illness?

In psychology, there is a mental illness or mental disorder called Delusional Disorder. The main feature of this disorder is the presence of delusions, unshakable beliefs in something untrue or not based on reality. Over the past forty years there has been a growing increase in the feel-good result of recycling. Many sustainability managers today approach sustainability as being synonymous with recycling. The idea is that we should recycle everything no matter the economic or environmental costs. We should do it because it “feels” like the right thing to do. But none of this is based on facts, data or science. In fact, the data and science tell us otherwise and points to the dark side, that this delusional approach of “recycle everything no matter the cost” creates more environmental and economic harm than doing nothing.

Over the past forty years we have subsidized billions on top of billions of dollars, and have increased taxes (bottle bills, bag fees) to subsidize plastics recycling. The result? An industry that doesn’t and wouldn’t survive on its own, recycles less than 10% of our overall plastics and hasn’t even remotely fixed, solved, or made a dent in plastic pollution. All this time, effort and billions of dollars have not even begun to make a positive impact in the massive amounts of coffee pods, sachet packets, personal care packaging and products, zipper bags, plastic bags, plastic film, foam coffee cups, foam and plastic soda cups, lids, straws, utensils, food and product packaging, Styrofoam….. The list goes on and on, to the tune of billions upon billions of these items being disposed of each year and increasing, mind you, because we are adding more and more people to the planet and we continue to consume more and more stuff. None of the efforts that have been made thus far, or that are currently being proposed, to recycle these items have or will change the direction we have been on and are currently heading in.

When sustainability managers develop, and implement ideas and programs such as bring back programs which require additional infrastructure for managing, shipping, transportation to processors which will address less than 5% of a company’s plastic packaging and do so because it feels good or sounds good but neglects the use of facts and data to validate that the overall environmental impact is beneficial, these kinds of programs are hopeful or wishful thinking at best.

One might even ask how it’s possible to perform the responsibility of sustainability guardian’s without the use of facts, data and science? How does one solve a problem of this magnitude neglecting science and data and facts? This “feel good” approach to recycling has resulted in some people becoming mentally ill with Delusional Disorder.

So how do we begin to move in a direction to fix this mental illness? How do we open the eyes of those with Delusional Disorder and get them to start using facts, data and science to develop solutions that will have true environmental benefits and value? Delusional disorder is considered difficult to treat. Antipsychotic drugs, antidepressants and mood-stabilizing medications are frequently used to treat this mental illness and there is growing interest in psychological therapies such as psychotherapy and cognitive behavioral therapy (CBT) as a means of treatment.

These treatments would take years to get society back on track with using science, data and facts in our solutions to addressing humanities plastic waste problem. So how do we (as a society) effectively and quickly treat this widespread mental illness before it’s too late for the environment? We must begin to make reality based science and data driven decisions and develop solutions that will address the plastic waste we humans continue to produce, use and discard so that we can move in the direction of making real positive changes that will have true environmental value and benefit, instead of the delusion of acting on what might feel good but will ultimately never solve plastic pollution.

The “New Plastics Economy” neglects Energy Recovery

When the Circular Economy model was introduced, it was built on finding ways to recoup value, especially as it pertains to the end-of-life. It was about finding ways to derive growth and increase value from existing infrastructures. Better value propositions with predictable results. It was an ‘all options on the table’ approach to looking at our resources through a different lens to ensure materials are “cycling” at the highest level possible, at all levels. Then, the “New Plastics Economy” emerged and something’s not adding up.

I know this is going to be confusing to some, but we absolutely cannot and will not be able to recycle our way out of the negative environmental impact plastics are causing. At their end of use, plastic can be captured, sorted, and it can be processed, all of which takes immense amounts of resources. But in the end, if the commodity is worth less than the processing costs, it’s an exercise in futility. It doesn’t make sense, if it doesn’t make cents.  Besides, recycling only extends the life of plastics (limited in cycles); it is not an end-of-life solution.

Companies like Waste Management (the largest residential recycler) have openly admitted this challenge and fully disclose that, if you want it to be “recycled” it’s fine by them, but both the processing costs and the profits will be baked into the contract… This does not mean that those non-recyclable plastics will get recycled into new products, just simply collected and processed over into the landfill.

And what’s the single largest recycler on the planet telling those in sustainability circles? If they really want the “biggest bang for the buck environmentally,” they should be focusing on the innovations within their “large-scale mixed-waste anaerobic digesters.” Actually, they say “today’s modern landfills,” but the word “landfill” can be a trigger word for some people.

Nevertheless, this industry has harnessed economies of scale and science, improving landfills and making “garbage dumps” a thing of the past. Today’s highly engineered modern landfills operate under strict federal and state regulations to ensure the protection of health and the environment. Today, 85% of U.S. municipal solid waste (including the vast majority of plastics) ends-up in landfills that trap gases which generate power for industries, provides heat for homes and clean burning fuel for vehicles. The industry is also advancing carbon sequestration in landfills, preventing carbon from re-entering the atmosphere.

Ironically, the New Plastics Economy paints itself as the group that’s all about exploring and driving innovation to solve the issues we face, even going as far as offering a $2 million dollar award.   While at the same time, blatantly dismissing the innovations that are available today.

Being unwilling to recognize and utilize the advances that are available to elevate the actual end-of-life value seems to be extremely shortsighted for any economic platform, especially when that value-add is ENERGY. By simply ensuring materials are designed for the ENERGY value that today’s modern landfills provide, not only could we begin to eliminate plastic waste from our environment, but those 64 billion lbs. of plastic going into a landfill each year has a value of over $15.5 billion in base load clean renewable ENERGY – predictable and measurable.

Most importantly, if the idea is to build a sustainable and thriving economy based on plastics, opposing the ability to include the fundamental aspect of recovering ENERGY at the final stage is an enormous lapse in judgement. ENERGY is one of the single-most important factors in economic growth. By its very nature, our economy is predicated on exponential growth. It is under constant pressure by many factors such as debt and population growth to continually and infinitely expand. What many policy makers and, by extension, people, don’t understand is that continued economic growth in our current system is completely reliant on a continuing increase in the availability of ENERGY to perform work. One cannot collect materials for recycling, process recyclate, nor make new products from recycled material without ENERGY.

The last two hundred years of accelerated growth in mankind’s numbers and achievements were only made possible by cheap, easily available fossil fuels.  It’s been reported that in the next 20 years we will need to harness 50% more ENERGY to support our economy. Everything, including the lifecycle of plastics, should be tied to utilizing the resources we have today to produce clean renewable ENERGY in the most cost effective manner as we possibly can.

The New Plastics Economy states that the reinforcing of recycling is economically more attractive than ENERGY recovery.  Systematically, this is not true and flies in the face of the Circular Economy model which is meant to replicate the nutrient cycles in nature. Most all carbon materials in nature are converted into energy during their natural nutrient cycle.  Plastics should be no different. Prosperity and the conservation of our planet will not be reached with platitudes about theoretical innovations in this theoretically-flawed New Plastics Economy.

Compostable Plastics do not create compost

Compostable plastics do NOT create compost

If you are anything like me, you’ve no doubt heard about and thought about how wonderful the idea of compostable plastics sound. Plant based materials used as feedstock to make compostable plastics, that once used simply discard in the compost pile and voila, the plastics you just used has now become nutrient rich soil to help aid in the next generation of plant growth. It sounds so healthy and natural it must be good, right?

The major issue with “compostable plastics” is that they don’t make compost. What’s that, you say? That’s right, compostable plastics don’t breakdown and convert into compost or result in nutrient rich soil as the process and name would lead one to believe. This aspect of compostable plastics is extremely misleading. Let me explain.

The ASTM D6400 is the Standard Specification by which all compostable plastics strive to meet. Compostable plastics that claim to be certified compostable will no doubt have to pass the ASTM D6400 specification. Organizations like BPI (Biodegradable Products Institute) provide 3rd party certifications that a compostable plastic product meets the requirements of the ASTM D6400 standard specification. Even California has product labeling legislation that requires any plastic item claiming to be compostable must meet the ASTM D6400 Standard Specification in order to make such claims. But what exactly are the requirements for meeting the ASTM D6400 specification?

ASTM D6400 includes a handful of requirements that address things like soil toxicity, disintegration, heavy metals and biodegradation. To understand what is left after “composting” compostable plastics, (which is biodegradation in an environment that has oxygen readily available to micro-organisms) let’s take a look at the portion of the ASTM D6400 that addresses biodegradation the rate and extent required in order for a compostable plastic item to pass/fail.

The requirement for a material to pass ASTM D6400 and be considered “compostable” is that the material must reach or exceed 90% conversion of the carbon within the material into carbon dioxide (CO2). In other words, 90% or more of the material would need to be turned into CO2 (converted by micro-organisms) during the time-frame of the test – 180 days. Given this requirement to convert a minimum of 90% of the carbon within the sample compostable plastic item into CO2 (gas), simple math at this point would tell us that the remaining carbon (that’s part of what makes nutrient rich soil) would be equal to or less than 10% of the total carbon making up that compostable plastic item. So basically 90% of the item will simply go up into the atmosphere as CO2 gas, it will not remain behind as soil.

For those who are new to composting or compost, the purpose and result of a natural and healthy composting process is nutrient rich soil (compost). This soil is made up of various organic materials and nutrients; nitrogen, potassium, microorganisms, humus (a carbon rich material) and other forms of carbon. Carbon is arguably the anchor to having nutrient rich soil as it helps to retain moisture and provides a foundation for all other microbial processes for optimizing healthy plant growth. With less than 10% of the carbon in a “compostable plastic” remaining as soil, there is little to no value as nutrient rich soil. Even worse, 90% or more of it was converted to greenhouse gas and sent into the atmosphere.

Compostable plastics may “compost” (biodegrade by micro-organisms in an oxygen environment) if placed in the right composting environment, but they do not create compost (nutrient rich soil).