The Reign of Recycling

IF you live in the United States, you probably do some form of recycling. It’s likely that you separate paper from plastic and glass and metal. You rinse the bottles and cans, and you might put food scraps in a container destined for a composting facility. As you sort everything into the right bins, you probably assume that recycling is helping your community and protecting the environment. But is it? Are you in fact wasting your time?

In 1996, I wrote a long article for The New York Times Magazine arguing that the recycling process as we carried it out was wasteful. I presented plenty of evidence that recycling was costly and ineffectual, but its defenders said that it was unfair to rush to judgment. Noting that the modern recycling movement had really just begun just a few years earlier, they predicted it would flourish as the industry matured and the public learned how to recycle properly.

So, what’s happened since then? While it’s true that the recycling message has reached more people than ever, when it comes to the bottom line, both economically and environmentally, not much has changed at all.

Despite decades of exhortations and mandates, it’s still typically more expensive for municipalities to recycle household waste than to send it to a landfill. Prices for recyclable materials have plummeted because of lower oil prices and reduced demand for them overseas. The slump has forced some recycling companies to shut plants and cancel plans for new technologies. The mood is so gloomy that one industry veteran tried to cheer up her colleagues this summer with an article in a trade journal titled, “Recycling Is Not Dead!”

While politicians set higher and higher goals, the national rate of recycling has stagnated in recent years. Yes, it’s popular in affluent neighborhoods like Park Slope in Brooklyn and in cities like San Francisco, but residents of the Bronx and Houston don’t have the same fervor for sorting garbage in their spare time.

The future for recycling looks even worse. As cities move beyond recycling paper and metals, and into glass, food scraps and assorted plastics, the costs rise sharply while the environmental benefits decline and sometimes vanish. “If you believe recycling is good for the planet and that we need to do more of it, then there’s a crisis to confront,” says David P. Steiner, the chief executive officer of Waste Management, the largest recycler of household trash in the United States. “Trying to turn garbage into gold costs a lot more than expected. We need to ask ourselves: What is the goal here?”

Recycling has been relentlessly promoted as a goal in and of itself: an unalloyed public good and private virtue that is indoctrinated in students from kindergarten through college. As a result, otherwise well-informed and educated people have no idea of the relative costs and benefits.

They probably don’t know, for instance, that to reduce carbon emissions, you’ll accomplish a lot more by sorting paper and aluminum cans than by worrying about yogurt containers and half-eaten slices of pizza. Most people also assume that recycling plastic bottles must be doing lots for the planet. They’ve been encouraged by the Environmental Protection Agency, which assures the public that recycling plastic results in less carbon being released into the atmosphere.

But how much difference does it make? Here’s some perspective: To offset the greenhouse impact of one passenger’s round-trip flight between New York and London, you’d have to recycle roughly 40,000 plastic bottles, assuming you fly coach. If you sit in business- or first-class, where each passenger takes up more space, it could be more like 100,000.

Even those statistics might be misleading. New York and other cities instruct people to rinse the bottles before putting them in the recycling bin, but the E.P.A.’s life-cycle calculation doesn’t take that water into account. That single omission can make a big difference, according to Chris Goodall, the author of “How to Live a Low-Carbon Life.” Mr. Goodall calculates that if you wash plastic in water that was heated by coal-derived electricity, then the net effect of your recycling could be more carbon in the atmosphere.

To many public officials, recycling is a question of morality, not cost-benefit analysis. Mayor Bill de Blasio of New York declared that by 2030 the city would no longer send any garbage to landfills. “This is the way of the future if we’re going to save our earth,” he explained while announcing that New York would join San Francisco, Seattle and other cities in moving toward a “zero waste” policy, which would require an unprecedented level of recycling.

The national rate of recycling rose during the 1990s to 25 percent, meeting the goal set by an E.P.A. official, J. Winston Porter. He advised state officials that no more than about 35 percent of the nation’s trash was worth recycling, but some ignored him and set goals of 50 percent and higher. Most of those goals were never met and the national rate has been stuck around 34 percent in recent years.

“It makes sense to recycle commercial cardboard and some paper, as well as selected metals and plastics,” he says. “But other materials rarely make sense, including food waste and other compostables. The zero-waste goal makes no sense at all — it’s very expensive with almost no real environmental benefit.”

One of the original goals of the recycling movement was to avert a supposed crisis because there was no room left in the nation’s landfills. But that media-inspired fear was never realistic in a country with so much open space. In reporting the 1996 article I found that all the trash generated by Americans for the next 1,000 years would fit on one-tenth of 1 percent of the land available for grazing. And that tiny amount of land wouldn’t be lost forever, because landfills are typically covered with grass and converted to parkland, like the Freshkills Park being created on Staten Island. The United States Open tennis tournament is played on the site of an old landfill — and one that never had the linings and other environmental safeguards required today.

Though most cities shun landfills, they have been welcomed in rural communities that reap large economic benefits (and have plenty of greenery to buffer residents from the sights and smells). Consequently, the great landfill shortage has not arrived, and neither have the shortages of raw materials that were supposed to make recycling profitable.

With the economic rationale gone, advocates for recycling have switched to environmental arguments. Researchers have calculated that there are indeed such benefits to recycling, but not in the way that many people imagine.

Most of these benefits do not come from reducing the need for landfills and incinerators. A modern well-lined landfill in a rural area can have relatively little environmental impact. Decomposing garbage releases methane, a potent greenhouse gas, but landfill operators have started capturing it and using it to generate electricity. Modern incinerators, while politically unpopular in the United States, release so few pollutants that they’ve been widely accepted in the eco-conscious countries of Northern Europe and Japan for generating clean energy.

Moreover, recycling operations have their own environmental costs, like extra trucks on the road and pollution from recycling operations. Composting facilities around the country have inspired complaints about nauseating odors, swarming rats and defecating sea gulls. After New York City started sending food waste to be composted in Delaware, the unhappy neighbors of the composting plant successfully campaigned to shut it down last year.
Sign Up for the Opinion Today Newsletter

THE environmental benefits of recycling come chiefly from reducing the need to manufacture new products — less mining, drilling and logging. But that’s not so appealing to the workers in those industries and to the communities that have accepted the environmental trade-offs that come with those jobs.

Nearly everyone, though, approves of one potential benefit of recycling: reduced emissions of greenhouse gases. Its advocates often cite an estimate by the E.P.A. that recycling municipal solid waste in the United States saves the equivalent of 186 million metric tons of carbon dioxide, comparable to removing the emissions of 39 million cars.

According to the E.P.A.’s estimates, virtually all the greenhouse benefits — more than 90 percent — come from just a few materials: paper, cardboard and metals like the aluminum in soda cans. That’s because recycling one ton of metal or paper saves about three tons of carbon dioxide, a much bigger payoff than the other materials analyzed by the E.P.A. Recycling one ton of plastic saves only slightly more than one ton of carbon dioxide. A ton of food saves a little less than a ton. For glass, you have to recycle three tons in order to get about one ton of greenhouse benefits. Worst of all is yard waste: it takes 20 tons of it to save a single ton of carbon dioxide.

Once you exclude paper products and metals, the total annual savings in the United States from recycling everything else in municipal trash — plastics, glass, food, yard trimmings, textiles, rubber, leather — is only two-tenths of 1 percent of America’s carbon footprint.

As a business, recycling is on the wrong side of two long-term global economic trends. For centuries, the real cost of labor has been increasing while the real cost of raw materials has been declining. That’s why we can afford to buy so much more stuff than our ancestors could. As a labor-intensive activity, recycling is an increasingly expensive way to produce materials that are less and less valuable.

Recyclers have tried to improve the economics by automating the sorting process, but they’ve been frustrated by politicians eager to increase recycling rates by adding new materials of little value. The more types of trash that are recycled, the more difficult it becomes to sort the valuable from the worthless.

In New York City, the net cost of recycling a ton of trash is now $300 more than it would cost to bury the trash instead. That adds up to millions of extra dollars per year — about half the budget of the parks department — that New Yorkers are spending for the privilege of recycling. That money could buy far more valuable benefits, including more significant reductions in greenhouse emissions.

So what is a socially conscious, sensible person to do?

It would be much simpler and more effective to impose the equivalent of a carbon tax on garbage, as Thomas C. Kinnaman has proposed after conducting what is probably the most thorough comparison of the social costs of recycling, landfilling and incineration. Dr. Kinnaman, an economist at Bucknell University, considered everything from environmental damage to the pleasure that some people take in recycling (the “warm glow” that makes them willing to pay extra to do it).

He concludes that the social good would be optimized by subsidizing the recycling of some metals, and by imposing a $15 tax on each ton of trash that goes to the landfill. That tax would offset the environmental costs, chiefly the greenhouse impact, and allow each municipality to make a guilt-free choice based on local economics and its citizens’ wishes. The result, Dr. Kinnaman predicts, would be a lot less recycling than there is today.

Then why do so many public officials keep vowing to do more of it? Special-interest politics is one reason — pressure from green groups — but it’s also because recycling intuitively appeals to many voters: It makes people feel virtuous, especially affluent people who feel guilty about their enormous environmental footprint. It is less an ethical activity than a religious ritual, like the ones performed by Catholics to obtain indulgences for their sins.

Religious rituals don’t need any practical justification for the believers who perform them voluntarily. But many recyclers want more than just the freedom to practice their religion. They want to make these rituals mandatory for everyone else, too, with stiff fines for sinners who don’t sort properly. Seattle has become so aggressive that the city is being sued by residents who maintain that the inspectors rooting through their trash are violating their constitutional right to privacy.

It would take legions of garbage police to enforce a zero-waste society, but true believers insist that’s the future. When Mayor de Blasio promised to eliminate garbage in New York, he said it was “ludicrous” and “outdated” to keep sending garbage to landfills. Recycling, he declared, was the only way for New York to become “a truly sustainable city.”

But cities have been burying garbage for thousands of years, and it’s still the easiest and cheapest solution for trash. The recycling movement is floundering, and its survival depends on continual subsidies, sermons and policing. How can you build a sustainable city with a strategy that can’t even sustain itself?

Read original NY Times article written by John Tierney https://www.nytimes.com/2015/10/04/opinion/sunday/the-reign-of-recycling.html?mwrsm=Email

Treatment or Cure?

In medicine, there is an age-old debate surrounding whether physicians and researchers should focus on treating the symptoms of an ailment or creating a cure. From a business and shareholder perspective, treating symptoms is preferred because it ensures continued revenues and much higher shareholder return; whereas the patient would much rather obtain the cure. Unfortunately, the decision of where to spend money and marketing is most often determined by those who seek financial gain – the shareholders.

Plastic is often portrayed as the scourge of our planet, not a day passes without an email, article or news brief talking about plastic waste. Most often, the complaint about plastic surrounds plastic waste (it is seldom to hear complaints about the cost, performance or use of plastics), and the solution promoted seems to constantly revolve around recycling. Recycling is touted as the end-all method to prevent plastic waste.

However, is it possible that recycling is just a method to treat the symptoms of plastic waste?

Consider for a moment that the disease is plastic waste. The cure is to eliminate the waste of used plastic – this means that any solution must definitively address the end-of-life aspect of plastic.

Ever wondered why products using recycled plastic only have a percentage of recycled plastic, why recycled resin has a brownish haze or why plastic is down-cycled rather than recycled?

To recycle plastic, it must be melted and then reheated again to form a product. Heat is kryptonite to plastic, making it weaker, more brittle and increased discoloration. Within 3-4 times of reheating the plastic, it becomes useless and must be discarded as waste. Every ounce of plastic will eventually be discarded – contributing to the disease of plastic waste.

Recycling is simply a method of treating the symptoms, to create a perception of improvement without ever addressing the fact that all the plastic will eventually be discarded as waste regardless of recycle rates. We will not cure this disease until we look at the final discard of plastic and how to remove it completely after use.

So, why do we continue to spend billions each year on treating the symptom rather than focusing on the cure? Why all the marketing and pressure to focus only on recycling?

Makes one wonder who the shareholders are…..

Modern technology and chemistry provides options for converting discarded plastic into energy and fuel – without incineration. This removes the plastic completely from the environment while creating value for communities. Perhaps it is time to cure this problem rather than simply dealing with the symptoms?

FMCG’s, please THINK DIFFERENTLY

The latest estimates indicate that 8300 million metric tons (Mt) of plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated. Despite the efforts of the last 40 years, only 9% of this material is getting recycled. The environmental impact of plastic pollution is wreaking havoc and if smarter decisions are not made regarding how this material is being managed the effects will certainly be catastrophic for the entire ecosystem.

We have a plastic pollution problem, not a plastic sourcing problem. It begins in design, not disposal. Whether the resin is petroleum based or bio-based, if that complex molecule that’s been created does not perform in accordance with the common method in which this waste is effectively and customarily managed, especially when the returns contribute to lowering CO2, increasing clean energy recovery and eliminating plastic waste as an environmental pollutant, then the sincerity of the entire sustainability platform should be questioned.

The vast majority of this plastic pollution is coming from FMCG companies that rely on single-use/non-recyclable packaging to deliver goods. The packaging provides unparalleled performance and value in achieving this purpose. However, the post-consumer repercussions are disastrous. Consumers are being used as scapegoats, blamed for low recycling rates and even buying the product in the first place, but most consumers are dutifully ensuring this material is in fact being sent to a managed waste environment. But sustainability professionals within FMCG companies fail to recognize and capitalize on this asset that sits under their proverbial noses.

This problem must be viewed through a different lens and nothing is more critical in accomplishing this then getting a handle on how today’s waste is actually managed and the intrinsic value propositions that exist in complying with these infrastructures.

Does recycling cause mental illness?

In psychology, there is a mental illness or mental disorder called Delusional Disorder. The main feature of this disorder is the presence of delusions, unshakable beliefs in something untrue or not based on reality. Over the past forty years there has been a growing increase in the feel-good result of recycling. Many sustainability managers today approach sustainability as being synonymous with recycling. The idea is that we should recycle everything no matter the economic or environmental costs. We should do it because it “feels” like the right thing to do. But none of this is based on facts, data or science. In fact, the data and science tell us otherwise and points to the dark side, that this delusional approach of “recycle everything no matter the cost” creates more environmental and economic harm than doing nothing.

Over the past forty years we have subsidized billions on top of billions of dollars, and have increased taxes (bottle bills, bag fees) to subsidize plastics recycling. The result? An industry that doesn’t and wouldn’t survive on its own, recycles less than 10% of our overall plastics and hasn’t even remotely fixed, solved, or made a dent in plastic pollution. All this time, effort and billions of dollars have not even begun to make a positive impact in the massive amounts of coffee pods, sachet packets, personal care packaging and products, zipper bags, plastic bags, plastic film, foam coffee cups, foam and plastic soda cups, lids, straws, utensils, food and product packaging, Styrofoam….. The list goes on and on, to the tune of billions upon billions of these items being disposed of each year and increasing, mind you, because we are adding more and more people to the planet and we continue to consume more and more stuff. None of the efforts that have been made thus far, or that are currently being proposed, to recycle these items have or will change the direction we have been on and are currently heading in.

When sustainability managers develop, and implement ideas and programs such as bring back programs which require additional infrastructure for managing, shipping, transportation to processors which will address less than 5% of a company’s plastic packaging and do so because it feels good or sounds good but neglects the use of facts and data to validate that the overall environmental impact is beneficial, these kinds of programs are hopeful or wishful thinking at best.

One might even ask how it’s possible to perform the responsibility of sustainability guardian’s without the use of facts, data and science? How does one solve a problem of this magnitude neglecting science and data and facts? This “feel good” approach to recycling has resulted in some people becoming mentally ill with Delusional Disorder.

So how do we begin to move in a direction to fix this mental illness? How do we open the eyes of those with Delusional Disorder and get them to start using facts, data and science to develop solutions that will have true environmental benefits and value? Delusional disorder is considered difficult to treat. Antipsychotic drugs, antidepressants and mood-stabilizing medications are frequently used to treat this mental illness and there is growing interest in psychological therapies such as psychotherapy and cognitive behavioral therapy (CBT) as a means of treatment.

These treatments would take years to get society back on track with using science, data and facts in our solutions to addressing humanities plastic waste problem. So how do we (as a society) effectively and quickly treat this widespread mental illness before it’s too late for the environment? We must begin to make reality based science and data driven decisions and develop solutions that will address the plastic waste we humans continue to produce, use and discard so that we can move in the direction of making real positive changes that will have true environmental value and benefit, instead of the delusion of acting on what might feel good but will ultimately never solve plastic pollution.

The “New Plastics Economy” neglects Energy Recovery

When the Circular Economy model was introduced, it was built on finding ways to recoup value, especially as it pertains to the end-of-life. It was about finding ways to derive growth and increase value from existing infrastructures. Better value propositions with predictable results. It was an ‘all options on the table’ approach to looking at our resources through a different lens to ensure materials are “cycling” at the highest level possible, at all levels. Then, the “New Plastics Economy” emerged and something’s not adding up.

I know this is going to be confusing to some, but we absolutely cannot and will not be able to recycle our way out of the negative environmental impact plastics are causing. At their end of use, plastic can be captured, sorted, and it can be processed, all of which takes immense amounts of resources. But in the end, if the commodity is worth less than the processing costs, it’s an exercise in futility. It doesn’t make sense, if it doesn’t make cents.  Besides, recycling only extends the life of plastics (limited in cycles); it is not an end-of-life solution.

Companies like Waste Management (the largest residential recycler) have openly admitted this challenge and fully disclose that, if you want it to be “recycled” it’s fine by them, but both the processing costs and the profits will be baked into the contract… This does not mean that those non-recyclable plastics will get recycled into new products, just simply collected and processed over into the landfill.

And what’s the single largest recycler on the planet telling those in sustainability circles? If they really want the “biggest bang for the buck environmentally,” they should be focusing on the innovations within their “large-scale mixed-waste anaerobic digesters.” Actually, they say “today’s modern landfills,” but the word “landfill” can be a trigger word for some people.

Nevertheless, this industry has harnessed economies of scale and science, improving landfills and making “garbage dumps” a thing of the past. Today’s highly engineered modern landfills operate under strict federal and state regulations to ensure the protection of health and the environment. Today, 85% of U.S. municipal solid waste (including the vast majority of plastics) ends-up in landfills that trap gases which generate power for industries, provides heat for homes and clean burning fuel for vehicles. The industry is also advancing carbon sequestration in landfills, preventing carbon from re-entering the atmosphere.

Ironically, the New Plastics Economy paints itself as the group that’s all about exploring and driving innovation to solve the issues we face, even going as far as offering a $2 million dollar award.   While at the same time, blatantly dismissing the innovations that are available today.

Being unwilling to recognize and utilize the advances that are available to elevate the actual end-of-life value seems to be extremely shortsighted for any economic platform, especially when that value-add is ENERGY. By simply ensuring materials are designed for the ENERGY value that today’s modern landfills provide, not only could we begin to eliminate plastic waste from our environment, but those 64 billion lbs. of plastic going into a landfill each year has a value of over $15.5 billion in base load clean renewable ENERGY – predictable and measurable.

Most importantly, if the idea is to build a sustainable and thriving economy based on plastics, opposing the ability to include the fundamental aspect of recovering ENERGY at the final stage is an enormous lapse in judgement. ENERGY is one of the single-most important factors in economic growth. By its very nature, our economy is predicated on exponential growth. It is under constant pressure by many factors such as debt and population growth to continually and infinitely expand. What many policy makers and, by extension, people, don’t understand is that continued economic growth in our current system is completely reliant on a continuing increase in the availability of ENERGY to perform work. One cannot collect materials for recycling, process recyclate, nor make new products from recycled material without ENERGY.

The last two hundred years of accelerated growth in mankind’s numbers and achievements were only made possible by cheap, easily available fossil fuels.  It’s been reported that in the next 20 years we will need to harness 50% more ENERGY to support our economy. Everything, including the lifecycle of plastics, should be tied to utilizing the resources we have today to produce clean renewable ENERGY in the most cost effective manner as we possibly can.

The New Plastics Economy states that the reinforcing of recycling is economically more attractive than ENERGY recovery.  Systematically, this is not true and flies in the face of the Circular Economy model which is meant to replicate the nutrient cycles in nature. Most all carbon materials in nature are converted into energy during their natural nutrient cycle.  Plastics should be no different. Prosperity and the conservation of our planet will not be reached with platitudes about theoretical innovations in this theoretically-flawed New Plastics Economy.

Compostable Plastics do not create compost

Compostable plastics do NOT create compost

If you are anything like me, you’ve no doubt heard about and thought about how wonderful the idea of compostable plastics sound. Plant based materials used as feedstock to make compostable plastics, that once used simply discard in the compost pile and voila, the plastics you just used has now become nutrient rich soil to help aid in the next generation of plant growth. It sounds so healthy and natural it must be good, right?

The major issue with “compostable plastics” is that they don’t make compost. What’s that, you say? That’s right, compostable plastics don’t breakdown and convert into compost or result in nutrient rich soil as the process and name would lead one to believe. This aspect of compostable plastics is extremely misleading. Let me explain.

The ASTM D6400 is the Standard Specification by which all compostable plastics strive to meet. Compostable plastics that claim to be certified compostable will no doubt have to pass the ASTM D6400 specification. Organizations like BPI (Biodegradable Products Institute) provide 3rd party certifications that a compostable plastic product meets the requirements of the ASTM D6400 standard specification. Even California has product labeling legislation that requires any plastic item claiming to be compostable must meet the ASTM D6400 Standard Specification in order to make such claims. But what exactly are the requirements for meeting the ASTM D6400 specification?

ASTM D6400 includes a handful of requirements that address things like soil toxicity, disintegration, heavy metals and biodegradation. To understand what is left after “composting” compostable plastics, (which is biodegradation in an environment that has oxygen readily available to micro-organisms) let’s take a look at the portion of the ASTM D6400 that addresses biodegradation the rate and extent required in order for a compostable plastic item to pass/fail.

The requirement for a material to pass ASTM D6400 and be considered “compostable” is that the material must reach or exceed 90% conversion of the carbon within the material into carbon dioxide (CO2). In other words, 90% or more of the material would need to be turned into CO2 (converted by micro-organisms) during the time-frame of the test – 180 days. Given this requirement to convert a minimum of 90% of the carbon within the sample compostable plastic item into CO2 (gas), simple math at this point would tell us that the remaining carbon (that’s part of what makes nutrient rich soil) would be equal to or less than 10% of the total carbon making up that compostable plastic item. So basically 90% of the item will simply go up into the atmosphere as CO2 gas, it will not remain behind as soil.

For those who are new to composting or compost, the purpose and result of a natural and healthy composting process is nutrient rich soil (compost). This soil is made up of various organic materials and nutrients; nitrogen, potassium, microorganisms, humus (a carbon rich material) and other forms of carbon. Carbon is arguably the anchor to having nutrient rich soil as it helps to retain moisture and provides a foundation for all other microbial processes for optimizing healthy plant growth. With less than 10% of the carbon in a “compostable plastic” remaining as soil, there is little to no value as nutrient rich soil. Even worse, 90% or more of it was converted to greenhouse gas and sent into the atmosphere.

Compostable plastics may “compost” (biodegrade by micro-organisms in an oxygen environment) if placed in the right composting environment, but they do not create compost (nutrient rich soil).

Study Finds Recyclability Issues In Weight, Labels for PET Bottles

By Martín Caballero, BEVNET

For consumers, the recycling process begins and ends the moment they place a used plastic bottle in the bin.

For brands and bottle manufacturers, that process is considerably more complex. And as a movement towards sustainability and waste reduction continues to shape the industry, both are taking a closer look at how physical characteristics, design, and supplemental materials like ink and glue can affect the recyclability of bottles made with polyethylene terephthalate (PET).

Plastic Technologies Inc. (PTI), a firm that provides package design, development and engineering services to bottle manufacturers, explored this issue in a recent study analyzing how PET bottle weight affects performance, cost, and environmental impact, as well as how other design decisions influence recyclability.

The results concluded that ultra-lightweight bottles can negatively impact the effectiveness of recycling systems, while showing that the a majority of the bottles tested showed significant issues in recyclability, based on Association of Plastic Recyclers (APR) guidelines.

The study analyzed 500mL PET bottles, sold individually at room temperature, from the highest bottled water consumption regions where market-leading global brands are sold, including the U.S., Mexico, Europe (France, Italy, Switzerland), and India. Each were tested for weight, pressure, product volume, fill point, top load, thickness, section weights, color and closure types.

In an interview with BevNET, Marcio Amazonas, Director of Latin American Operations for PTI, said that study was partially intended to send a message to the category market leaders that good design, in terms of recyclability, can be a positive influence on the industry.

“We wanted to make this study as a competitive analysis to show who are the best brand owners in terms of a good design for recyclability,” said Amazonas. “It’s also sending a message to our own customers that we can help you improve your design.”

Weight is a crucial factor in determining bottle recyclability, but it has also increasingly become a way in which brands communicate a premium offering to consumers, and attempting to balance these two competing interests can make things even more complicated.

The samples evaluated from the U.S. reflected this stratification. Out of the seven, two samples came from premium-priced packages sold in 6-packs, which were around 22-23 g. The rest came from bottles of mid-range priced water, weighing 13-17 g, and value-priced bottles, weighing 7.5 to 8.5 g.

However, the study notes that the performance was not a direct correlation to the weight of the package.

“Sometimes the best ones were too heavy, so they are good in a way but they are not the most environmentally sound, because they could be lighter, Amazonas said. “But that’s a brand owner choice to position that brand as premium. So they want to go with the heavy plastic; that’s their call, but it’s not ideal for efficiency.”

In recent years, some brands, such as Nestlé Waters, have adopted ultra-thin, super lightweight bottles based on the idea that they are more environmentally friendly because they require less energy to manufacture and transport. Yet according to Amazonas, recyclers are complaining about problems related to those bottles as well.

For example, lighter packaging can increase the number of bottles entering the recycling stream; Amazonas estimated that it could add 10,000 bottles per ton of recyclable materials.

Furthermore, when labels are sorted in a process called elutriation, they are soaked in a large tank of water to separate PET from polyolefins. Afterwards, an air current dries the materials and pushes the labels out of the chamber, but if the bottle is too light, it will be forced out as well.

“The yields suffer not only because of the potential presence of non-PET, but also mechanically speaking, the process is designed for a certain density that suffers with this lightweighting,” said Amazonas.

Besides weight, Amazonas noted that ink and label type as other potentially disruptive factors to the recycling process, as materials, colors, sizes and even the label application process all have an impact.

Of the seven U.S. samples tested, five had polymer labels, one had paper and one had a combination of the two. Five out of seven samples used a wrap-around label, while two used an adhered label.

All seven U.S. bottle samples tested had labels that caused color and clarity change in the wash, and label bleed was the most common issue observed. The study concludes that “the use of soluble inks and glues and the specification of the label substrate could have resulted in much better recyclability scores.”

“I think the ink is one of the big issues because it is so simple to resolve, and of course [the brands] are all competing on price and going for the cheapest thing,” said Amazonas, noting the presence of other non-PET contaminants in labels, such as PVC, that burn at different temperatures can cause recycling operations to reject certain bottles. “So sometimes it’s an economic decision on the design side to get to lower cost labels, inks and glues, and that’s what makes the design a little poor.”

In terms of solutions, Amazonas said the ideal PET bottle from a recyclability perspective would be clear with no colorants and none of the chemical additives that are sometimes used to create a barrier between the plastic and the liquid in bottles of milk or juice.

On a moral level, he noted the efforts of regulatory agencies like the Environmental Protection Agency (EPA) in promoting sustainable materials management, and said that brands will seek to capture the market of conscious consumers who expect recyclability to be a key component of a company’s mission.

“The heaviest volumes of bottle-to-bottle use is here, so we have all the good reasons to thank the market leaders like the guys we tested and we keep pushing,” he said. “They are not doing anything horrible, but if we don’t talk about it they will probably go with the most economic solution.”

Yet despite his deep knowledge of the industry, Amazonas said that the most important logistical piece of the recycling process is the simple act of the consumer throwing the bottle into the collection bin.

“If there’s no collection, there’s no recycling — so what’s the point?”

Read original article here: https://www.bevnet.com/news/2017/study-finds-recyclability-issues-weight-labels-pet-bottles?utm_source=BevNET.com%2C+Inc.+List&utm_campaign=37a1f533c8-mailchimp&utm_medium=email&utm_term=0_f63e064108-37a1f533c8-168618890

Global Landfill Gas Market is set to grow appreciably owing to stringent norms associated with greenhouse emission.

The report “Landfill Gas Market Size, Industry Analysis Report, Regional Outlook (U.S., Canada, Brazil, Germany, Italy, France, UK, Netherland, Russia, China, India, Malaysia, Singapore, South Africa), Application Development, Competitive Market Share & Forecast, 2017 – 2024” Rising demand for the clean energy technologies will further enhance the industry outlook across the forecast period. In 2016, Singapore government had setup a new target towards the reduction in carbon emission by 36% by 2030 below 2005 levels.

Depleting conventional resources leading to growing energy security concern will positively steer the global landfill gas market. Effective energy utilization and integration of competent equipment will further drive the technology by 2024. In 2017, UK based Brunel University in collaboration with a waste management firm Mission Resources have announced development of a Home Energy Recovery Unit (HERU) to heat water in the country.

Rising waste disposal leading to increasing waste to energy techniques will foster the global landfill gas market share by 2024. Government favorable waste management initiatives will thrust the global industry. In 2017, the Australian government have initiated a USD 2 million program in support of waste to energy technologies across Victoria City.

Complex design of treatment facility and inconsistency of waste composition will hamper the global landfill gas market. Extensive urban population growth favoring to the domestic solid waste technology leading to low generation rates and enhanced treatment technologies.

On the basis of application, the global landfill gas market can be segmented into utility flares, pipeline-quality, process heater, leachate evaporation and electricity generation. These applications are anticipated to grow substantially complying to growing environmental concern and industrialization across the globe. In 2017, the Federal Energy Regulatory Commission(FERC) has approved the settlement that provides a single natural gas quality specification for heavier hydrocarbons and ethane in the U.S.

Landfill gas market from electricity generation is set to grow appreciably pertaining to developing distributed generation technology and intensive growing demand for electricity. In 2016, the U.S. based ENER-G systems piloted an independent USD 7.58 million, 11MW landfill gas to power project in South Africa. Landfill gas market from utility flare is anticipated to grow considerably with increasing demand for reduced carbon emission technologies across the globe. The U.S. based Atlantic County Landfill Energy has established a USD 440,000 worth enclosed flare to reduce excess methane to electric plant besides the landfill in New Jersey.

Landfill gas market from pipeline-quality gas is set to grow appreciably owing to stringent government initiatives and advanced infrastructure implementations across the globe. In 2017, Wiscosin council has requested for installation, delivery and fabrication of a biogas treatment system in compliance to convert landfill gas into high-BTU biomethane in the U.S.

Key players in the global landfill gas market are namely, Waste Management Inc., Infinis, Veolia, A2A Energia, Aterro Recycling Pvt. Ltd., AEB Amsterdam, Shenzhen Energy, Babcock & Wilcox technology implementations. Mergers & Acquisitions and effective turnkey project implementations and are the key market player strategies. In 2017, UK based Veolia acquired Kurion, the U.S. for USD 350 million to expand its presence across nuclear waste business.

Read original press release from: Global Market Insights, Inc. here http://www.openpr.com/news/486221/Global-Landfill-Gas-Market-is-set-to-grow-appreciably-owing-to-stringent-norms-associated-with-greenhouse-emission.html

By 2050, it’s estimated there will be more plastic waste in the ocean [by weight] than fish. Perhaps, we should start listening to Mr. Fish.

At the 2017 Waste Management Executive Sustainability Forum a message was delivered by Mr. Jim Fish, CEO of Waste Management (WM), echoing his predecessor, Mr. David Steiner.   “The goal is to maximize resource value while minimizing and even eliminating environmental impact, so both our economy and our environment can thrive.”  In 2016 Mr. Steiner told the National Recycling Conference in New Orleans that coupling landfill gas-to-energy with recycling would provide the “biggest bang for the buck environmentally.”   Mr. Fish concurs, specifically points out that WM’s day-to-day operational technology continues to evolve and it will play an even larger role moving forward, both on the collection and disposal sides of WM’s business.   And as Mr. Steiner indicated last year, what’s most exciting to Mr. Fish continues to be what’s happening with the materials that cannot be recycled or composted.   “Today, environmentally safe landfills play an important role for materials that don’t have viable end markets.” Why is this?   Because today’s modern landfills continue to clear all the hurdles, they work, they’re scalable, they’re economical and there are policies and regulations in place to support and encourage the developments of next generation alternatives in this space.   In short, these facilities are pumping-out clean, inexpensive, renewable energy like no other option!

This is where achieving true Circularity comes into play and it’s what most technologies are striving for when it comes to last/best option in handling waste – Energy Recovery. WM spends a great deal of time and expense exploring best possible options. However, one of the major pillars of WM’s strategy is adhering to the price discipline that is Mr. Steiner’s legacy. “In a business where there is no price elasticity in demand, we must stay dedicated to that discipline” and with the current low energy prices, “nothing can compete with the low landfill pricing.” According to Mr. Fish, other options have cost-structures that are at least 3-10 times the cost of landfill air space.

WM remains dedicated to a “sustainable” recycling business. As they should, not only are they the biggest landfill company in North America, they’re also North America’s biggest recycler – by an even wider margin.   In fact, it’s one of WM highest returns on invested capital, a business they want to ensure survives and thrives in the future. But Mr. Fish points out that we are in unchartered waters, the changes in products and packaging that are coming into our homes are significantly different and so are the recyclables going out, considerably increasing contamination rates and reducing value. This has led WM to take a hard look at what recycling means in term of environmental benefits.

When it comes to packaging, Mr. Fish wants us to realize that we’re an “on-the-go” society. This is translating into copious amounts of plastic packaging, much of which simply cannot be recycled.   This “convenience rules” trend is going to continue, causing tension between the desire to ‘recycle it all’ and the limitations of equipment, human behavior and the customer’s tolerance for cost.   With a 6-7% growth in non-recyclable flexible packaging, a 15% growth in E-Commerce and a recycling stream that’s 30% lighter than it used to be, Mr. Fish recommends evaluating the objectives to make sure we’re targeting that which achieves the greatest return value.   He explains, “Environmental benefits of recycling look very different when approached from a greenhouse gas emission reduction perspective versus simply looking at how many pounds or kilograms of material are averted from landfills.” So this got Mr. Fish and the rest of WM thinking, “What‘s the right goal? Is it to keep chasing that last ton to recycle or is it to achieve the highest possible environmental benefit? For years, recycle tons has been the goal and in response to high recycling goals, we’ve seen some creative efforts to achieve these goals. Even when the environmental impacts might be questionable and the economics just made no sense. We now believe that recycling should not be the goal in and of itself, we need to be a lot more specific to ensure that we are achieving the environmental benefits we want to and think we can.”

Mr. Fish goes on to explain that when it comes to the management of organic waste (including packaging) the first priority is in trying to reduce the amount of material from making it this far down the value chain – of course.  However, when this waste is collected for recovery (including non-recycled plastics, even the ones that say “recycla-bull”) it becomes feedstock for a process and a new product, either compost or an energy product.   Anything not designed to comply with either option reduces the quality of this feedstock driving-up cost and threatening the entire process.

To achieve real success, Mr. Fish emphasizes the need to be actively engaged in the entire value chain of material and suggests that we make-up our minds about packaging when talking about organic waste. “Do we love it for preserving food or do we loath it for making waste? Should we ban it, tax it, recycle it, compost it, burn it or landfill it? What are the comparative environmental benefits and the costs?”

Mr. Fish went on to highlight the importance of managing food waste. The main objective here is to reduce food waste and fortunately plastic packaging plays a critical role in preserving our food. Plastic packaging is not food and it should not be expected to perform like food, which would defeat the purpose. Nor should this material be comingled with food waste disposal, elevating the risk of more waste-stream contamination. Besides, industrial composting standards (ASTM D6400) require 90% conversion to gas in 180 days, leaving no nutrient value and losing any ability to capture the gas. In my opinion, compostable standards for packaging, although well-intentioned, simply overshoot any return value.   To jeopardize the entire supply chain with inadequate product performance and stability for the least common means of disposal doesn’t make much sense to me. Instead, more focus should be on the primary means of disposal (anaerobic) and the proven asset that this environment offers, the recovery of clean renewable energy.

Nonetheless, Mr. Fish emphasized that we can attack both sides of this problem. “We are in the midst of rapid change, changing demographics, changing consumer behavior, change in purchasing habits and packaging innovations, all of which are having huge impacts on recycling and the waste industry. Our response needs to be sophisticated and strategic… And as we tackle sometimes competing needs, all of us, producers, retailers, regulators and others, must use data to make the right environmental and economic decisions… We have the data, let’s put it to use!”

The data provides a clear pathway to achieving our environmental goals. Packaging should have the highest value and minimize environmental impacts in its most common discard method– without compromising the package quality. For the vast majority of packaging this does not equate to recycling, instead the environmental and economical winner is conversion to energy in modern, environmentally safe landfills. This shift in creating science and data driven solutions, rather than basing actions on perception or environmental folklore, is vital in reaching WM’s goal to process this material to its highest worth, maximizing the resource value and eliminate the environmental impacts of packaging in a way that’s both good for the economy and our planet.  Although this message seemed to completely elude the panel of experts that followed, discussing the conundrums of complex packaging, I hope others will begin to take Mr. Fish’s advice before we’re all swimming in it.

Something might be missing in that sustainable packaging playbook.

As we embark on 2017 a number of companies have rolled-out their packaging sustainability initiatives. I have to wonder, what the heck are some of them doing?  Last I checked the major problem is still the environmental impact that plastic waste is having on our planet – right?  I assume so, considering the latest projections estimate more plastic waste in the oceans (by weight) than fish by 2050. Which is plausible since production is through the roof and expected to double in the next 20 years, while we continue to struggle with dismal recovery rates and an antiquated view of recycling.

You might have also noticed an increase in the demand for clean, renewable energy.  With the world needing to greatly increase energy supply in the future, especially cleanly-generated electricity, this has become a top prioritySo, with that being said, how is it that the major producers of single-use plastic packaging seem to be unable to truly define the most common means of disposal and the value that can be achieved by simply complying with this fact?  Instead, they continue to irrationally demonize an asset that sits right under their proverbial noses.

Let’s try this exercise together. Let’s say you’re one of the giant producers of plastic packaging (Unilever, Coca-Cola, General Mills, Nestle, Pepsico, Kraft) and I were to ask you, what’s the most common disposal method of the plastic packaging you produce?  The collective and honest answer, albeit extremely basic, is a landfill. However, before panic sets in over this fact, let’s take a moment to define this a little more accurately.  Because today, 85% of all municipal solid waste in the U.S. actually ends-up in well-managed and heavily regulated anaerobic environment that controls and converts biogas into clean renewable energy. This is a fact and these facilities are generating power for communities and businesses, providing heat for homes and fuel for vehicles.

Can we stop pretending that this is a mystery? Recognize the innovations around how we manage waste and see what’s happening today. GM harnesses landfill-gas-to-energy for its 2.08-million square-foot facility reducing greenhouse gas emissions by a whopping 5,000 tons a year!  Tammy Giroux, manager of government relations for GM said, “(It’s) good for the environment, good for business and good for the community.” Waste Management’s landfill-gas-to-energy facilities power the equivalent of 470,000 households, offsetting 2.5 million tons of coal and 2.5 million tons of carbon dioxide emissions per year. At the 2016 Resource Recycling Conference in New Orleans, David Steiner (former CEO of Waste Management) specified, “When you combine state-of-the-art landfill gas-to-energy systems with best-in-class recycling…That’s where you get the biggest bang for the buck environmentally.”  So why aren’t these major producers of single-cycle packaging including energy recovery as part of the overall “recycling” efforts and ensuring performance compliance with this asset?

Please don’t tell me that the molecules that make-up my bag of chips are far too valuable to waste and that it would make more sense to collect, sort and process this material into a worthless commodity rather than ensuring its removed from the environment and converted into energy.  Or worse, jeopardize both product stability and performance (including the ability to recycle) to achieve performance compliance with the least common disposal method that offers no end-of-life value.

According to the Environmental Research and Education Foundation (EREF), consumers are generating 6 lbs. of waste per day. It would take heavy-handed regulations and stiff government subsidies to program consumers into becoming hyper-vigilant garbage sorters.  For the foreseeable future, the political atmosphere does not appear to be conducive for such tactics.  We need to be smarter about the options before us and increase the value that can be derived from our existing infrastructures.  When high recycling rates are touted around the world, they usually include waste-to-energy.  Yet, too many companies still manage to overlook this valuable resource, disregarding the intrinsic environmental and economic benefits that it offers.   Hopefully, as we set forth into a new era, more emphasis will be placed on using LCA’s and factual scientific data to address the sustainability challenges we face.