Category Archives: Uncategorized

By 2050, it’s estimated there will be more plastic waste in the ocean [by weight] than fish. Perhaps, we should start listening to Mr. Fish.

At the 2017 Waste Management Executive Sustainability Forum a message was delivered by Mr. Jim Fish, CEO of Waste Management (WM), echoing his predecessor, Mr. David Steiner.   “The goal is to maximize resource value while minimizing and even eliminating environmental impact, so both our economy and our environment can thrive.”  In 2016 Mr. Steiner told the National Recycling Conference in New Orleans that coupling landfill gas-to-energy with recycling would provide the “biggest bang for the buck environmentally.”   Mr. Fish concurs, specifically points out that WM’s day-to-day operational technology continues to evolve and it will play an even larger role moving forward, both on the collection and disposal sides of WM’s business.   And as Mr. Steiner indicated last year, what’s most exciting to Mr. Fish continues to be what’s happening with the materials that cannot be recycled or composted.   “Today, environmentally safe landfills play an important role for materials that don’t have viable end markets.” Why is this?   Because today’s modern landfills continue to clear all the hurdles, they work, they’re scalable, they’re economical and there are policies and regulations in place to support and encourage the developments of next generation alternatives in this space.   In short, these facilities are pumping-out clean, inexpensive, renewable energy like no other option!

This is where achieving true Circularity comes into play and it’s what most technologies are striving for when it comes to last/best option in handling waste – Energy Recovery. WM spends a great deal of time and expense exploring best possible options. However, one of the major pillars of WM’s strategy is adhering to the price discipline that is Mr. Steiner’s legacy. “In a business where there is no price elasticity in demand, we must stay dedicated to that discipline” and with the current low energy prices, “nothing can compete with the low landfill pricing.” According to Mr. Fish, other options have cost-structures that are at least 3-10 times the cost of landfill air space.

WM remains dedicated to a “sustainable” recycling business. As they should, not only are they the biggest landfill company in North America, they’re also North America’s biggest recycler – by an even wider margin.   In fact, it’s one of WM highest returns on invested capital, a business they want to ensure survives and thrives in the future. But Mr. Fish points out that we are in unchartered waters, the changes in products and packaging that are coming into our homes are significantly different and so are the recyclables going out, considerably increasing contamination rates and reducing value. This has led WM to take a hard look at what recycling means in term of environmental benefits.

When it comes to packaging, Mr. Fish wants us to realize that we’re an “on-the-go” society. This is translating into copious amounts of plastic packaging, much of which simply cannot be recycled.   This “convenience rules” trend is going to continue, causing tension between the desire to ‘recycle it all’ and the limitations of equipment, human behavior and the customer’s tolerance for cost.   With a 6-7% growth in non-recyclable flexible packaging, a 15% growth in E-Commerce and a recycling stream that’s 30% lighter than it used to be, Mr. Fish recommends evaluating the objectives to make sure we’re targeting that which achieves the greatest return value.   He explains, “Environmental benefits of recycling look very different when approached from a greenhouse gas emission reduction perspective versus simply looking at how many pounds or kilograms of material are averted from landfills.” So this got Mr. Fish and the rest of WM thinking, “What‘s the right goal? Is it to keep chasing that last ton to recycle or is it to achieve the highest possible environmental benefit? For years, recycle tons has been the goal and in response to high recycling goals, we’ve seen some creative efforts to achieve these goals. Even when the environmental impacts might be questionable and the economics just made no sense. We now believe that recycling should not be the goal in and of itself, we need to be a lot more specific to ensure that we are achieving the environmental benefits we want to and think we can.”

Mr. Fish goes on to explain that when it comes to the management of organic waste (including packaging) the first priority is in trying to reduce the amount of material from making it this far down the value chain – of course.  However, when this waste is collected for recovery (including non-recycled plastics, even the ones that say “recycla-bull”) it becomes feedstock for a process and a new product, either compost or an energy product.   Anything not designed to comply with either option reduces the quality of this feedstock driving-up cost and threatening the entire process.

To achieve real success, Mr. Fish emphasizes the need to be actively engaged in the entire value chain of material and suggests that we make-up our minds about packaging when talking about organic waste. “Do we love it for preserving food or do we loath it for making waste? Should we ban it, tax it, recycle it, compost it, burn it or landfill it? What are the comparative environmental benefits and the costs?”

Mr. Fish went on to highlight the importance of managing food waste. The main objective here is to reduce food waste and fortunately plastic packaging plays a critical role in preserving our food. Plastic packaging is not food and it should not be expected to perform like food, which would defeat the purpose. Nor should this material be comingled with food waste disposal, elevating the risk of more waste-stream contamination. Besides, industrial composting standards (ASTM D6400) require 90% conversion to gas in 180 days, leaving no nutrient value and losing any ability to capture the gas. In my opinion, compostable standards for packaging, although well-intentioned, simply overshoot any return value.   To jeopardize the entire supply chain with inadequate product performance and stability for the least common means of disposal doesn’t make much sense to me. Instead, more focus should be on the primary means of disposal (anaerobic) and the proven asset that this environment offers, the recovery of clean renewable energy.

Nonetheless, Mr. Fish emphasized that we can attack both sides of this problem. “We are in the midst of rapid change, changing demographics, changing consumer behavior, change in purchasing habits and packaging innovations, all of which are having huge impacts on recycling and the waste industry. Our response needs to be sophisticated and strategic… And as we tackle sometimes competing needs, all of us, producers, retailers, regulators and others, must use data to make the right environmental and economic decisions… We have the data, let’s put it to use!”

The data provides a clear pathway to achieving our environmental goals. Packaging should have the highest value and minimize environmental impacts in its most common discard method– without compromising the package quality. For the vast majority of packaging this does not equate to recycling, instead the environmental and economical winner is conversion to energy in modern, environmentally safe landfills. This shift in creating science and data driven solutions, rather than basing actions on perception or environmental folklore, is vital in reaching WM’s goal to process this material to its highest worth, maximizing the resource value and eliminate the environmental impacts of packaging in a way that’s both good for the economy and our planet.  Although this message seemed to completely elude the panel of experts that followed, discussing the conundrums of complex packaging, I hope others will begin to take Mr. Fish’s advice before we’re all swimming in it.

Orange County is packing power in Landfill Gas-to-Energy

th7PCDTFTS

Do it for the OC! Can you imagine the concentration of plastic packaging that’s accumulated in Orange County alone?   Beyond standard recycling, did you know that Orange County has installed four Landfill Gas-to-Energy facilities? The most recent $60 million dollar investment will power 18,500 homes. Altogether, the four facilities will produce 400,000 megawatts of electricity per year, enough to power more than 50,000 homes. These projects are turning our waste into clean energy all over the country and right now they’re the single-most common disposal environment of plastic waste. Ensuring energy recovery in packaging design offers the greatest value in full-scale recycling. Get it out of the environment and into the grid, make today’s waste, tomorrow’s energy!  Design for disposal.

Sustainable Packaging: Are we wasting valuable energy vilifying landfills?

Biogas is a renewable energy source that exerts a very small carbon footprint and has proven to be an extremely viable resource. The cause is indisputable and the effect holds the key to significantly advancing sustainability in plastic packaging. The cause is a process in which living organisms, microbes, breakdown organic matter in the absence of oxygen (anaerobically). The effect is an immensely valuable alternative energy resource. Although the term for what causes this process cannot be labeled on any plastic packaging or product in the State of California, our ability to design plastic applications to biodegrade in anaerobic environments is the catalyst for advancing our efforts in how we handle plastic waste. To achieve circularity, recouping end-of-life value is imperative and our energy needs are paramount. Today, our most inexpensive disposal method returns one of our greatest needs and it’s already the single most common waste stream for plastics. With our ever growing energy requirements, is it wise to continue to overlook this valuable resource?

Speaking of California, did you know that Orange County just added another landfill gas-to-energy (LFGTE) project, making it the third LFGTE facility in this immediate region? At a tune of $60 million, this highly efficient and strictly regulated facility is not only estimated to reduce CO2 emissions by approximately 53,000 tons annually, but it will also generate roughly 160,000 megawatt-hours (MWh) of electricity. Collectively, the three LFGTE operations in this one region alone produce approximately 380,000 MWh of electricity annually, enough to power some 56,000 Southern California homes.

Apple, Coca-Cola, Anheuser-Busch, BMW, General Motors, Kimberly-Clark, Mars, UPS, Pepsi and many others have harnessed this valuable resource as an important part of their competitive strategy. The US EPA and the Departments of Agriculture and Energy recognized directed biogas as an emerging technology in a December 2015 report, touting that it “offers the nation a cost-effective and profitable solution to reducing emissions, diverting waste streams, and producing renewable energy.”

Today in the United States over 85% of all municipal solid waste is disposed of into landfills that are already converting landfill gas to green energy! This energy is used to power homes, manufacturing, businesses, schools, and government facilities. These are also the same landfills that are being used to dispose of the vast majority (over 90%) of all plastics used. Think about this; what if all of the plastics being disposed of into landfills were waste-to-energy compliant and would be converted into green/clean energy? We would instantly solve the vast majority of our plastic waste problem and help solve some of our energy shortage problem, all without the need to subsidize billions of dollars.

It is irrefutable that we have the ability/technology to accelerate the biodegradation process of plastics. The question now becomes, where should this process take place? In the New Plastics Economy, the objective is to harness innovations that can scale across the system, to re-define what’s possible and create conditions for a new economy. It’s about deriving greater “end-of-life” value through the infrastructures we already have in place. Today, one of our highest priorities is alternative energy. With the vast majority of plastic waste entering anaerobic environments that control and convert biogas into clean energy, we should probably stop ignoring the elephant in the room.

For more information, please contact ENSO Plastics.

Finding Circularity with Single Cycle Packaging

Let’s look at the issue of plastic waste and how we can use the circular economic model to resolve some of the problems that we face, that’s ultimately spilling into our environment.   Some 300 million tons of plastic is manufactured globally each year and “plastic packaging” accounts for about 78 million tons of it. That’s 172 billion pounds of non-reusable, non-recyclable and unequivocally unaccounted for plastic waste. This includes items such as flexible packaging, films, foamed material, small items, contaminated material, complex/multi-layer applications and anything colored, where recycling and reusability are practically non-existent.  These are single use, single cycle, applications.  Also, there’s unanimous agreement that the vast majority of all these applications are destined for a landfill. And these are not the demonized landfills from days gone by; I’m talking about today’s modern landfills that are now energy generating power plants.

This discussion is not for the consumer, this is for the difference makers, the sustainability managers, the leaders that can make a difference. They’re the companies that, according to Extended Producer Responsibility (EPR), are to be held accountable for the post-consumer aspect of its products and packaging. I’m talking about companies like Kraft, Coca-Cola, Nestle, PepsiCo, P&G, General Mills, Johnson & Johnson, Kellogg, Mars, Unilever and all the brands under them.

companies

We all know, or the data tells us, that this is the single most common disposal method of all this material. It should also be known that waste-to-energy has proven to be one of our greatest resources for alternative energy.   Whether it’s an anaerobic digester, a bioreactor or today’s modern landfills, most plastic packaging is ultimately ending-up in a unique anaerobic environment that is controlling and converting biogas into clean energy. Some of these companies utilize the energy from landfills, yet they haven’t put the pieces together to figure out that the very trash that their products produce could be the feedstock for the alternative energy resource they’re already harnessing. Too often, the end-of-life aspect is ignored or swept under the rug with theoretical contemplations about disposal methods that simply don’t exist and senseless confusion.

Yet, nearly all 50 states include landfill gas-to-energy as part of their green energy portfolios. It’s recognized by the United Nations, the EPA, as well as dozens of Fortune 500 companies and government organizations that all utilize energy from landfills.  However, the dots just aren’t being connected.   I recently asked the Director of Sustainability for one of these 10 companies about this topic and they honestly said that they’ve never heard of such a thing and can’t imagine that we’ll ever get our energy from slowly decomposing waste. Yet, three years ago this same company won top honors by the EPA as one of the largest on-site green power generators because of its use of Landfill Gas-to-Energy (LGE) to power its manufacturing facilities! Seriously, why the disconnect between what companies are doing and what companies should and could be doing to think more circular? Imagine if you will, this same company implementing landfill biodegradable packaging and then using the energy from landfill gas.  This is true circular economy thinking, especially when energy needs will increase 50% in the next couple decades.  Without requiring any change to the infrastructures in place today and without modifying consumer behavior, these single use applications can be designed to cycle at a higher level.

I’ve heard the idea that plastics should be made NOT to biodegrade in a landfill because one day we might want to mine for this material. This is completely asinine and assumes that we’ll have a need to mine for this material within the next couple hundred years.  The reason being, plastic will eventually biodegrade, we just won’t be able to capture the gases produced if we wait too long. Instead, if these applications were designed to biodegrade within the managed timeframe of these anaerobic environments, for every million pounds of plastic waste that enters a LGE facility, it offers the equivalence of over 422,000 pounds of coal, 52,000 gallons of gasoline and more than 1100 barrels of oil, which is used to power homes and factories, as well as fueling vehicles!

The technology is readily available to make most any polymer application anaerobically biodegradable, or commonly referred to as Landfill Biodegradable.   The technology does not change any processing parameters, there’s no change in any performance characteristics, and it’s not expensive. In fact, for about the price of a Tall Cappuccino, tens of thousands of Starbucks Coffee cups can be designed to biodegrade in a landfill.   These multi-layer applications are not being reused or recycled, but they are going to a landfill. So what gives, is it because of the misguided concept that landfills are bad? Perhaps it’s time to reevaluate the integral role of this disposal method that rely so heavily on; a lot has changed since the 80’s. In fact, you could say that we’re now diverting 75% of all MSW away from landfills, because the type of landfills that are being vilified are becoming obsolete – quickly.

A single loop system for handling our plastic waste is impractical, circularity does not mean singularity, there’s too much at stake, too much potential, and the infrastructure is already in place so there’s no need to implement Cass Sunstein’s “nudging” tactics to change consumer behavior. Besides, the fact that none of this material can/will be recycled is not because of consumer behavior, its feasibility and market demand, and it’s just not there. A company wanting to take accountability for its packaging needs to answer one candid question: What is the common disposal method of the application? Then, do what can be done to take advantage of this fact and understand the value in having our waste integrate into our waste infrastructures instead of working against it. The facts, the science and all the data, prove that there’s an enormous opportunity being overlooked.  I believe the circular economic model can work for plastics, but not if it’s simply a rebranding of the last 40+ years of rhetoric.

Moving beyond ‘recycle or die’


Mike Hower
Friday, February 5, 2016 – 12:01am

“It shouldn’t be ‘recycle or die,'” said David Allaway, senior policy analyst at the Oregon Department of Environmental Quality. “Not everything should be recycled, and some things should be landfilled. … It’s not recycling for the sake of recycling, but recycling to achieve an environmental outcome.”

Most modern recycling programs measure success through waste diverted from landfills — using weight as the unit of measurement. But not all materials have the same environmental impacts.

Given the predominant “recycling religion,” the assertion that the recyclable material isn’t always the best environmental choice might sound like heresy. But if the entire lifecycle of a product is considered, this actually can make a lot of sense.

“Sometimes the best choice in packaging is to use something that isn’t as recyclable but has lower upstream impacts,” Allaway said. In certain situations, for example, the best choice we have is to choose a material that has low upstream impacts and then sending it to the landfill.

Enter material management — that is, taking actions across the entire lifecycle of materials to reduce the impacts across the entire lifecycle of materials. According to Allaway, this broader view can give organizations a larger toolbox to use limited resources to make better decisions. A cornerstone of materials management is waste prevention through circular thinking.

While the circular economy has become somewhat of a buzzword in sustainability circles, its emphasis on viewing waste as nutrients has profound power to create production models that reduce reliance on raw materials by continuously cycling materials of all types back through supply chains — in other words: closing the loop.

“It isn’t one loop, but a series of loops from different systems,” said Jeff Wooster, global sustainability leader at Dow. “The circular economy can benefit society by taking waste from one loop and putting it into another.”
Starbucks’ systems-based approach to recycling

“I would define the circular economy by using the word ‘economy,'” said Jim Hanna, director of environmental impact at Starbucks.

The coffee chain has taken a systems-based approach to recycling, with an emphasis on upstream impacts. After hearing from its customers and employees that recycling coffee cops was a top priority, Starbucks established the goal of diverting 100 percent of its waste from its company-owned stores by 2015.

But achieving this was easier said than done.

“One of the things we discovered early on is that recycling is a hyperlocal issue, and for a global company our ability to have global targets and execute them at a hyperlocal level is a challenge,” Hanna said.

Starbucks faced a patchwork of recycling infrastructure and market conditions. Likewise, many of its store’s landlords control the waste collection and decide whether they want to provide recycling. These challenges require customizing recycling programs to each store and market, and may limit the company’s ability to offer recycling in some stores.

One key way Starbucks worked around this was by trying to increase the recyclability of its paper coffee cups, which Hanna said makes up the largest part of the company’s carbon footprint.

Starbucks engaged its paper suppliers to tinker with its cups. The results turned out positive: Paper mills came up with a way to recycle the cups, and profitably. Starbucks then was able to tell cities they should recycle their cups because there’s a willing buyer.

Despite its efforts, Starbucks failed to meet its waste diversion goal — just over 50 percent of its stories have achieved zero waste. Echoing Tierney, Hanna said that companies striving to achieve zero waste isn’t “realistic or ideal.”
Better metrics for recycling

Admirable as it may be to divert waste from landfills, our singular focus on this as a success metric may have blinded us from other negative environmental impacts — particularly upstream.

“We need better metrics we can all agree on,” Hanna said. “Carbon dioxide should be one of these metrics.”

When thinking about food waste, for example, significantly more greenhouse gases are generated producing food than emitted by food rotting in a landfill, according to Allaway. If we reduce the impacts upstream, this could multiply the desirable environmental outcomes downstream.

Climate change isn’t the only environmental impact — others are related to health, energy and the economy. If we equate circular economics with recycling, we may continue down the same unsustainable path that got us into our current predicament in the first place.

“One of the things that worries me about the circular economy is that it could be a red herring that prevents us from addressing the fundamental unsustainability of our systems of production and consumption,” Allaway said.

“I would rather see us recycle fewer things well, than more things poorly.”

Original article: https://www.greenbiz.com/article/can-circular-thinking-set-us-free-recycling-religion

Can circular thinking set us free from the ‘recycling religion’?

Mike Hower
Friday, February 5, 2016 – 12:01am
WM Forum
Courtesy ofWM2016

As blasphemous as it may sound, some things just shouldn’t be recycled. Onstage are John Tierney, author and The New York Times science writer; Dana Perino, former White House Press Secretary and now co-host of The Five on Fox News Channel; Adam Minter, author and columnist at Bloomberg.

Recycling waste is more trouble than it’s worth, according to John Tierney, author and New York Times science writer, in his widely read and contested Op-Ed, “The Reign of Recycling.”

“The recycling movement is floundering, and its survival depends on continual subsidies, sermons and policing,” he concluded in October. “How can you build a sustainable city with a strategy that can’t even sustain itself?”

But Tierney spoke of recycling with a slightly more moderate tone Thursday at the 2016 Waste Management Executive Sustainability Forum in Scottsdale, Arizona. WM produced the event, which GreenBiz hosted and livecasted.

Tierney conceded that “recycling does make sense for some materials at some times in some places. … My problem is with what I called the ‘recycling religion.’ The idea that recycling is an inherently virtuous activity, that the more we do of it the better, and that the ultimate goal should be achieving zero waste.”

At the forum, business, government and nonprofit leaders explored the idea that cities, companies and consumers should break free of their zealotry for recycling and open their minds to rethink waste from a more holistic perspective.

Originally posted at https://www.greenbiz.com/article/can-circular-thinking-set-us-free-recycling-religion

Landfill gas – Turning trash into clean energy – How Edmonton’s landfill powers 4,600 homes

Not many people give thought to what happens to their trash once it is placed in the curbside bin. They think of landfills as the old dry tomb polluting places of old. But landfills are quickly becoming centres of innovation when it comes to turning what we throw away into clean energy. Edmonton has had a landfill gas operation since 1992 and it was the first in Western Canada to turn old garbage into a new resource – clean energy. In fact most places that have green energy requirements utilize landfill gas to energy to meet those requirements and it is the least expensive form of green energy we have available on the planet today. Its funny that there are some people out there today that still promote zero landfill waste. Knowing that waste is converted into clean energy is innovative and futuristic.