Category Archives: Product Innovation

By 2050, it’s estimated there will be more plastic waste in the ocean [by weight] than fish. Perhaps, we should start listening to Mr. Fish.

At the 2017 Waste Management Executive Sustainability Forum a message was delivered by Mr. Jim Fish, CEO of Waste Management (WM), echoing his predecessor, Mr. David Steiner.   “The goal is to maximize resource value while minimizing and even eliminating environmental impact, so both our economy and our environment can thrive.”  In 2016 Mr. Steiner told the National Recycling Conference in New Orleans that coupling landfill gas-to-energy with recycling would provide the “biggest bang for the buck environmentally.”   Mr. Fish concurs, specifically points out that WM’s day-to-day operational technology continues to evolve and it will play an even larger role moving forward, both on the collection and disposal sides of WM’s business.   And as Mr. Steiner indicated last year, what’s most exciting to Mr. Fish continues to be what’s happening with the materials that cannot be recycled or composted.   “Today, environmentally safe landfills play an important role for materials that don’t have viable end markets.” Why is this?   Because today’s modern landfills continue to clear all the hurdles, they work, they’re scalable, they’re economical and there are policies and regulations in place to support and encourage the developments of next generation alternatives in this space.   In short, these facilities are pumping-out clean, inexpensive, renewable energy like no other option!

This is where achieving true Circularity comes into play and it’s what most technologies are striving for when it comes to last/best option in handling waste – Energy Recovery. WM spends a great deal of time and expense exploring best possible options. However, one of the major pillars of WM’s strategy is adhering to the price discipline that is Mr. Steiner’s legacy. “In a business where there is no price elasticity in demand, we must stay dedicated to that discipline” and with the current low energy prices, “nothing can compete with the low landfill pricing.” According to Mr. Fish, other options have cost-structures that are at least 3-10 times the cost of landfill air space.

WM remains dedicated to a “sustainable” recycling business. As they should, not only are they the biggest landfill company in North America, they’re also North America’s biggest recycler – by an even wider margin.   In fact, it’s one of WM highest returns on invested capital, a business they want to ensure survives and thrives in the future. But Mr. Fish points out that we are in unchartered waters, the changes in products and packaging that are coming into our homes are significantly different and so are the recyclables going out, considerably increasing contamination rates and reducing value. This has led WM to take a hard look at what recycling means in term of environmental benefits.

When it comes to packaging, Mr. Fish wants us to realize that we’re an “on-the-go” society. This is translating into copious amounts of plastic packaging, much of which simply cannot be recycled.   This “convenience rules” trend is going to continue, causing tension between the desire to ‘recycle it all’ and the limitations of equipment, human behavior and the customer’s tolerance for cost.   With a 6-7% growth in non-recyclable flexible packaging, a 15% growth in E-Commerce and a recycling stream that’s 30% lighter than it used to be, Mr. Fish recommends evaluating the objectives to make sure we’re targeting that which achieves the greatest return value.   He explains, “Environmental benefits of recycling look very different when approached from a greenhouse gas emission reduction perspective versus simply looking at how many pounds or kilograms of material are averted from landfills.” So this got Mr. Fish and the rest of WM thinking, “What‘s the right goal? Is it to keep chasing that last ton to recycle or is it to achieve the highest possible environmental benefit? For years, recycle tons has been the goal and in response to high recycling goals, we’ve seen some creative efforts to achieve these goals. Even when the environmental impacts might be questionable and the economics just made no sense. We now believe that recycling should not be the goal in and of itself, we need to be a lot more specific to ensure that we are achieving the environmental benefits we want to and think we can.”

Mr. Fish goes on to explain that when it comes to the management of organic waste (including packaging) the first priority is in trying to reduce the amount of material from making it this far down the value chain – of course.  However, when this waste is collected for recovery (including non-recycled plastics, even the ones that say “recycla-bull”) it becomes feedstock for a process and a new product, either compost or an energy product.   Anything not designed to comply with either option reduces the quality of this feedstock driving-up cost and threatening the entire process.

To achieve real success, Mr. Fish emphasizes the need to be actively engaged in the entire value chain of material and suggests that we make-up our minds about packaging when talking about organic waste. “Do we love it for preserving food or do we loath it for making waste? Should we ban it, tax it, recycle it, compost it, burn it or landfill it? What are the comparative environmental benefits and the costs?”

Mr. Fish went on to highlight the importance of managing food waste. The main objective here is to reduce food waste and fortunately plastic packaging plays a critical role in preserving our food. Plastic packaging is not food and it should not be expected to perform like food, which would defeat the purpose. Nor should this material be comingled with food waste disposal, elevating the risk of more waste-stream contamination. Besides, industrial composting standards (ASTM D6400) require 90% conversion to gas in 180 days, leaving no nutrient value and losing any ability to capture the gas. In my opinion, compostable standards for packaging, although well-intentioned, simply overshoot any return value.   To jeopardize the entire supply chain with inadequate product performance and stability for the least common means of disposal doesn’t make much sense to me. Instead, more focus should be on the primary means of disposal (anaerobic) and the proven asset that this environment offers, the recovery of clean renewable energy.

Nonetheless, Mr. Fish emphasized that we can attack both sides of this problem. “We are in the midst of rapid change, changing demographics, changing consumer behavior, change in purchasing habits and packaging innovations, all of which are having huge impacts on recycling and the waste industry. Our response needs to be sophisticated and strategic… And as we tackle sometimes competing needs, all of us, producers, retailers, regulators and others, must use data to make the right environmental and economic decisions… We have the data, let’s put it to use!”

The data provides a clear pathway to achieving our environmental goals. Packaging should have the highest value and minimize environmental impacts in its most common discard method– without compromising the package quality. For the vast majority of packaging this does not equate to recycling, instead the environmental and economical winner is conversion to energy in modern, environmentally safe landfills. This shift in creating science and data driven solutions, rather than basing actions on perception or environmental folklore, is vital in reaching WM’s goal to process this material to its highest worth, maximizing the resource value and eliminate the environmental impacts of packaging in a way that’s both good for the economy and our planet.  Although this message seemed to completely elude the panel of experts that followed, discussing the conundrums of complex packaging, I hope others will begin to take Mr. Fish’s advice before we’re all swimming in it.

Something might be missing in that sustainable packaging playbook.

As we embark on 2017 a number of companies have rolled-out their packaging sustainability initiatives. I have to wonder, what the heck are some of them doing?  Last I checked the major problem is still the environmental impact that plastic waste is having on our planet – right?  I assume so, considering the latest projections estimate more plastic waste in the oceans (by weight) than fish by 2050. Which is plausible since production is through the roof and expected to double in the next 20 years, while we continue to struggle with dismal recovery rates and an antiquated view of recycling.

You might have also noticed an increase in the demand for clean, renewable energy.  With the world needing to greatly increase energy supply in the future, especially cleanly-generated electricity, this has become a top prioritySo, with that being said, how is it that the major producers of single-use plastic packaging seem to be unable to truly define the most common means of disposal and the value that can be achieved by simply complying with this fact?  Instead, they continue to irrationally demonize an asset that sits right under their proverbial noses.

Let’s try this exercise together. Let’s say you’re one of the giant producers of plastic packaging (Unilever, Coca-Cola, General Mills, Nestle, Pepsico, Kraft) and I were to ask you, what’s the most common disposal method of the plastic packaging you produce?  The collective and honest answer, albeit extremely basic, is a landfill. However, before panic sets in over this fact, let’s take a moment to define this a little more accurately.  Because today, 85% of all municipal solid waste in the U.S. actually ends-up in well-managed and heavily regulated anaerobic environment that controls and converts biogas into clean renewable energy. This is a fact and these facilities are generating power for communities and businesses, providing heat for homes and fuel for vehicles.

Can we stop pretending that this is a mystery? Recognize the innovations around how we manage waste and see what’s happening today. GM harnesses landfill-gas-to-energy for its 2.08-million square-foot facility reducing greenhouse gas emissions by a whopping 5,000 tons a year!  Tammy Giroux, manager of government relations for GM said, “(It’s) good for the environment, good for business and good for the community.” Waste Management’s landfill-gas-to-energy facilities power the equivalent of 470,000 households, offsetting 2.5 million tons of coal and 2.5 million tons of carbon dioxide emissions per year. At the 2016 Resource Recycling Conference in New Orleans, David Steiner (former CEO of Waste Management) specified, “When you combine state-of-the-art landfill gas-to-energy systems with best-in-class recycling…That’s where you get the biggest bang for the buck environmentally.”  So why aren’t these major producers of single-cycle packaging including energy recovery as part of the overall “recycling” efforts and ensuring performance compliance with this asset?

Please don’t tell me that the molecules that make-up my bag of chips are far too valuable to waste and that it would make more sense to collect, sort and process this material into a worthless commodity rather than ensuring its removed from the environment and converted into energy.  Or worse, jeopardize both product stability and performance (including the ability to recycle) to achieve performance compliance with the least common disposal method that offers no end-of-life value.

According to the Environmental Research and Education Foundation (EREF), consumers are generating 6 lbs. of waste per day. It would take heavy-handed regulations and stiff government subsidies to program consumers into becoming hyper-vigilant garbage sorters.  For the foreseeable future, the political atmosphere does not appear to be conducive for such tactics.  We need to be smarter about the options before us and increase the value that can be derived from our existing infrastructures.  When high recycling rates are touted around the world, they usually include waste-to-energy.  Yet, too many companies still manage to overlook this valuable resource, disregarding the intrinsic environmental and economic benefits that it offers.   Hopefully, as we set forth into a new era, more emphasis will be placed on using LCA’s and factual scientific data to address the sustainability challenges we face.

Is recycling the key to sustainability?

graphThe 2015 U.S. plastic bottle recycling rate posted a slight decrease of 0.6 percent compared with 2014, according to the figures released by the Association of Plastic Recyclers (APR) and the American Chemistry Council (ACC) in the 26th annual “National Post-Consumer Plastics Bottle Recycling Report.” At the current and projected rate of production, a plateau like this should ring alarm bells!  The data clearly shows we are not going to recycle our way to a sustainable future.

As someone who’s actively engaged in the sustainable management of plastics, I pay close attention to companies that are managing our waste. These companies are on the frontlines of managing the recovery and disposal of solid and hazardous waste materials, which include landfills and recycling centers. I strongly believe that integrating the advice from these groups and working with them hand-in-hand should be an integral aspect to any sustainability program.

For example, at the recent 2016 Resource Recycling Conference in New Orleans, CEO of Waste Management, David Steiner, specifically pointed out that in order to achieve the “biggest bang for the buck” environmentally, coupling recycling with landfill gas-to-energy offers the greatest return value. This is the “environmental” recommendation from David Steiner, not a shareholder perspective. And Waste Management should know, they are after all the ones actually doing all the work in collecting, processing and managing the vast majority of the our waste.

His shareholder perspective is profitability, as it should be.   In a recent interview with Bloomberg, David Steiner explains that when you look at the various commodities that are recycled, there are some that are profitable. Those are primarily fiber (paper) and metals. Once you start moving into organics (plastics) and glass, they become less profitable (and in most cases over the past few years, they have lost money). In places like California they’ll do things to subsidize those types of materials to ensure Waste Management makes a profit, and then people can recycle those materials… Elsewhere, this does not work economically and understandably so. However, Waste Management will do what the municipality wants, just not at the expense of its bottom-line.   They’ll be happy to recycle everything; it’s only a matter of how much you want to pay for it. But buyers beware if the commodity prices do not cover the processing costs, recycling becomes an exercise in futility.

Nonetheless, if the municipalities are willing to pay (increase taxes) for this exercise, Waste Management will be happy to oblige. They will “recycle” it, collect it, sort it and they will process it. For Waste Management, processing costs and a little profit are baked into the contract. If there’s no market, no problem for Waste Management, this material will end up disposed into a form that is not recycling.

Recently at K 2016, Patrick Thomas, chairman of the European trade group Plastics Europe, said that “every tonne of plastic that goes to landfill is a waste. It is too valuable a resource to go that way.” Really, if it needs to be subsidized by the government (tax payer money), what value is he referring to and is it sustainable?

Where exactly is the value? Last year the average bale price of recycled bottles fell by 31%, meaning that the bottles were less valuable last year than the year before. Couple this with oil prices dropping by 47% and the result is a compounded decrease in the “value” of recycled plastics.

Today, 80 million tons of non-reusable/non-recyclable plastic packaging is produced annually. This volume is expected to double in 20 years. If this 80 million tons were simply designed to comply with the primary disposal method (a.k.a. modern landfills), this material could provide enough energy to power 30 million homes for a year!

Nearly 50 years has passed since the launch of the first universal recycling symbol, today only 14% of plastic packaging is collected for recycling. When additional value losses in sorting and reprocessing are factored in, only 5% of material value is retained for a subsequent use. Meanwhile, in a business-as-usual scenario, the ocean is expected to contain one ton of plastic for every three tons of fish by 2025, and by 2050, more plastics than fish [by weight].  What are we doing?

There’s a pervasive attitude that we must recycle everything at all costs, this is not sustainable by any definition. Plastics, unlike aluminum, can only be recycled 3-4 times; eventually it will find its way into our waste streams and into our environment.   Although recycling does provide us the option to extend the life of some plastics, it is not an ‘end-of-life’ solution. We cannot recycle our way out of the environmental waste problem plastics are causing. If companies continue to ignore performance compliance with todays’ primary means of disposal, facilities that actively control and convert biogas into clean alternative energy (intrinsic return value), progress will remain stagnate. The science and data validate David Steiner’s recommendation; including landfill gas-to-energy provides an environmental and economic value higher than any other option.  We can take the advice or not, Waste Management will come out ahead either way, but will we?

Power Packed Plastic Packaging

image-landfill-gasplant

ENSO’s technology provides a value investment in sustainable packaging. Our material is added to standard resins (including biopolymers) at a 1% load rate during the manufacturing process, just like a colorant. There are no changes in processing parameters or any performance characteristics. However, it ensures proper performance compliance within our anaerobic waste environments. Anaerobic digesters, bioreactors and today’s modern landfills continue to be the single-most common disposal method of plastic packaging and all contribute to the energy revolution that is upon us.  Within these active infrastructures we have an opportunity to reduce environmental plastic waste and recoup end-of-life value.

Waste-to-Energy (WtE) is an active and growing resource, available throughout the developing world. In the U.S. alone, ENSO’s technology provides an immediate 85% capture rate to reduce greenhouse gases and over 75% conversion of biogas into clean alternative energy. The returns are significant, measurable and applicable to greenhouse gas initiatives, energy recovery efforts and the environmental waste problem.  Plus, it provides intrinsic value for consumers as well. With both world and U.S. energy demand expected to increase in the future, America’s energy resources will only grow in importance. Ensuring today’s plastics will be tomorrow’s energy is inseparable from America’s larger prospects for improved economic growth, job creation, security and quality of life.

For less than the average price fluctuation of raw material, pennies on the dollar, ENSO can put real power in your packaging. It is the most efficient way, both economically and environmentally, to elevate the end-of-life value through energy recovery.  Get it out of the environment and into the grid, join the energy revolution!

To learn more, please contact ENSO Plastics.

Orange County is packing power in Landfill Gas-to-Energy

th7PCDTFTS

Do it for the OC! Can you imagine the concentration of plastic packaging that’s accumulated in Orange County alone?   Beyond standard recycling, did you know that Orange County has installed four Landfill Gas-to-Energy facilities? The most recent $60 million dollar investment will power 18,500 homes. Altogether, the four facilities will produce 400,000 megawatts of electricity per year, enough to power more than 50,000 homes. These projects are turning our waste into clean energy all over the country and right now they’re the single-most common disposal environment of plastic waste. Ensuring energy recovery in packaging design offers the greatest value in full-scale recycling. Get it out of the environment and into the grid, make today’s waste, tomorrow’s energy!  Design for disposal.

Landfill Power: Turning Gas into Energy

Paul Pabor, VP of Renewable Energy with Waste Management explains how they turn landfill gas into energy.

One source of renewable energy comes from landfills. Waste Management generates enough energy from its landfills to power over 400,000 homes (equivalent to 7,000,000 barrels of oil). Through a process called “landfill-gas-to-energy”, they are ensuring that the waste they collect does not necessarily go to waste.

Did you know that Waste Management produces more energy than the entire solar industry in the US.

How does the landfill gas to energy circle work? Biodegradable materials are disposed of into landfills which then biodegradable creating landfill gas which is captured and collected and sent to generators to provide energy for communities nearby.

Depending on where you live, when you turn on a light switch, that energy could be coming from the biodegradable materials thrown away into a landfill. Your plastics enhanced with ENSO RESTORE landfill biodegradable additive also biodegrade within the landfill and contribute to the landfill gas to energy circle.

From apple to light-bulb and now plastics to energy. Landfill gas-to-energy is some really Back to the Future kind of stuff. Its time we expand the way we think about energy!

It’s NOT Magic; It’s Science!

Some of the fondest memories that I have of my childhood include the magic of the holidays. As a child believing that a mystical being would surprisingly arrive at your home to leave gifts and candy was amazing. I mean really, what could be better than finding an Easter basket filled with candy, or waking up to find money left under your pillow in exchange for a lost tooth, or the mother of them all, waking up on Christmas morning to find a room filled with toys and candy.

As an adult thinking back on those days I find it simply amazing that so many people were in on keeping that magic alive. Friends, family members, teachers, neighbors, stores, media and complete strangers were all part of building that magical, mystical time of our lives and we believed it no matter how inconsistent the stories were. We wanted to believe it because it was magical and simply awesome. But unfortunately we grow up and are eventually let in on the big secret of what happens behind the magical curtain. Oh sure, it’s devastating as a child to be told about the big lie, the big secret.

As a father myself, I have become all too familiar with what it takes to keep the holiday magic alive for my children and someday for my grandchildren. As an adult I have learned the difference between believing in magic and believing in scientific facts and data. This is probably one thing that led me to starting a company that is passionate and dedicated to providing fact based real environmental solutions for plastics and rubber.

In heading up such a company I have been amazed to learn that some adults have hung onto the belief that magic still exists! Being part of environmental company focused on solving the global plastic pollution problem I have seen and heard quite a lot of amazing, bizarre and flat out crazy ideas and beliefs. Over those past seven years. I have seen firsthand just how cutthroat so called “environmentalists” can be to others. There are a lot of opinions out there as to what the best approach is to solving our environmental problems, and there are still people out there that believe in magical solutions to our environmental problems. I have actually heard grown adults call the process of biodegradation; magical, make believe, and mystical. And although the microscopic world is magical to describe – it is not magic at all – its science.

This leads me to the point of this article, it is not magical thinking, voodoo, or other types of mystical conjuring or hopeful thinking that is going to solve our global environmental (specifically plastics) pollution problems. Its downright solid science! Science based on the realities of having shelf-stable products, our consuming habits, and factual assessments of the conditions and infrastructures currently handling our plastic waste. All that scientific data is then used to develop solid solutions for addressing plastic pollution and waste “TODAY”, not tomorrow, or sometime in the distant future!

Too many times we read articles or press releases by companies announcing some future plan to address the plastic waste that their products and product packaging are producing. They usually say some absurd comment that by 2020 or some very far out there timeline, that they will have a solution to address the waste that their products produce, or even worse they do nothing tangible and announce that they support the recycling of their product and packaging and yet the realities are that their product/packaging isn’t recycled. There are even others who promote personal opinions as fact or they make up magical, unrealistic and flat out ridiculous solutions that are not based on any scientific facts, and are hopeful at the very least.

What we need to solve plastic pollution is to stay focused on the realities and facts of where plastic waste is being disposed of; which are landfill environments. The facts are that over 90% of all plastics are disposed of in landfills. You may not like hearing that, but none the less, it is a fact and one that cannot be ignored (although some try really hard). Once we come to the realization of where plastics are being disposed of we can develop solutions that best fit these existing infrastructures. For example; here in the United States, plastics will end up predominately in landfill environments with a seriously distant second being that of a recycling environment and lastly some plastic are incinerated or becomes litter. There are no (zero, none, zippo, nada) industrial composting infrastructures that readily accepts and processes industrial compostable plastics. And, when you look at the science behind many compostable plastics they do not scientifically show to be a solution to plastic pollution.

Knowing this fact about where our plastic waste is being disposed of in it leaves us with our two existing infrastructures of landfills and recycling. Again, you may not like this reality but to ignore this fact would be ignorant and would prevent real solutions from being implemented that would actually make a difference.

Recycling basically takes care of itself, if the plastic material is recyclable and that item is placed in a recycle facility it will most likely get recycled. Keep in mind that placing plastics into the recycle bin does not make that plastic become recycled. Only specific types of plastics are recycled, these are based on the economics of recycling that specific type of plastic.

But what about the +90% of plastics being disposed of in a landfill environment? Did you know that landfills today are designed significantly different than they were 20 years ago? Modern landfills are designed to manage the gases that are created as a result of biodegradation. When carbon material (food, plastics, yard waste, plant debris, etc.) is disposed of in modern landfills the biodegradation process from microbes creates methane gas. Methane gas is also called natural gas and is flammable. Modern landfills collect and convert landfill gases to energy. Today, over 74% of municipal solid waste is disposed of in landfills that capture and convert landfill gas to green energy – and to top that off, it is the least expensive form of green energy available, cheaper than hydro, solar and wind.

This process of converting landfill gas to energy is already happening today, there is nothing you or I need to do to make this happen, except to just change the way we think about plastics. What if plastics could be designed to be recycled (when and where possible) and also biodegrade when disposed of in a landfill, where the gases generated from the biodegradation process would be collected and burned to create green energy? Did you know that nearly all of the states that make up the United States have landfill gas to energy included in their green energy portfolios? This is all happening today and all we have to do is be smarter about our plastics!

Some might call this magic, magical or even voodoo; but here at ENSO Plastics we call it Science – a fact of life or reality! Come check it out for yourselves. Let’s move away from believing in the magical or hopeful yet- to- be- created solutions for plastic pollution and focus on science, facts and data to start making a difference today.

Sustainability with Landfilling

When considering landfills from a sustainability perspective, often the most difficult thing is to step back from the negative connotations of landfills. Too often, sustainability managers get caught in the trend of “zero landfill” because it is great marketing and it sounds like it would be more environmental. We must overcome the negative perception of landfills so we can evaluate them objectively.

 The truth is always in the facts. Landfills are an important part of any sustainability strategy. Most all of the waste worldwide goes into landfills. Landfills can be the most environmentally and economically beneficial disposal options for certain items. Technology has completely changed landfills; they are not the same as they were prior to the 1980’s. And landfills are an important part of many municipal green energy initiatives.

The design and operation of landfills has completely changed over the past few decades. Landfills are now actively managed to avoid leachate absorption into the surrounding soil, to avoid air emissions and they are a valuable and consistent source of renewable energy. Modern landfills are by far the most inexpensive method to dispose of materials and they allow a means to provide economic and environmental value through the conversion of landfill gas to energy.

 There is no doubt that most all plastics are disposed of in landfills. Even after 40 years of efforts to divert plastics from landfills, we still landfill over 90% of plastics. Many companies’ products and packaging will have closer to 100% landfill disposal. History has shown that we will continue to landfill plastics for a very long time and attempts to divert plastics from landfills usually causes more damage to the environment and economy than any benefit it may provide. Because of this, we must understand how to create sustainability with landfilling of plastics.

 Plastics in the landfill should biodegrade during the managed life of the landfill, 2-50 years. When compostable plastics enter a landfill many will biodegrade too rapidly and the methane is released into the atmosphere and most traditional plastics biodegrade over hundreds of years meaning, again, the methane goes into the atmosphere. We must use plastics that biodegrade during the 2-50 year managed time of a landfill so the methane can be managed, collected and converted to clean energy. Once collected, the methane provides energy, fuel, and reduces the methane’s global warming effects.

Ultimately, we cannot disregard landfilling because plastics are, and will continue to be, discarded into landfills. Instead, we must design plastics that provide value in the landfill. In this way, we can create sustainability platforms that are more realistic and beneficial.

For more details, check out the Sustainability Managers Complete Guide to Plastics: http://www.amazon.com/dp/B0175AQ24K

 

Just the Facts! Landfill Gas Renewable Energy

What is landfill gas?
Landfill gas is the product of the anaerobic decomposition of organic materials in a landfill. Methane comprises approximately half of this gas and can be converted into a renewable energy product. The EPA established the Landfill Methane Outreach Program to promote landfill gas beneficial use projects by partnering with states, local governments and the private sector. This program is a cornerstone of federal renewable energy initiatives.

What kind of energy can landfill gas produce?
Electricity generation is the most common energy recovery use, with two-thirds of existing projects producing this form of renewable energy. One third of the projects directly use landfill gas in boilers, dryers, kilns, etc.

Companies using landfill gas include BMW, SC Johnson, Tropicana, Ford, Dupont, Honeywell, Sunoco, General Motors, Fujifilm, Dart, Stouffers, Anheuser Busch, Frito-Lay, and many more.

How many landfills convert gas to energy?
According to EPA’s Landfill Methane Outreach program, as of July 2013, 621 landfill gas energy recovery programs are operating in the United States and approximately 450 other landfills are good candidates for these projects.

What are the energy benefits of using landfill gas as a renewable energy source?
As of October, 2012, existing recovery projects produced annual amounts of 14.8 billion kilowatt-hours of electricity and 102 billion cubic feet of landfill gas for direct use.

EPA estimates these products provide annual energy benefits of powering 1 million homes — a little fewer than in the state of Nevada and heating 736,000 homes — about the number of homes in Maine.

What are the environmental benefits of using landfill gas as a renewable energy?
In addition to the energy conservation benefits provided by converting landfill gas into a renewable energy product, reduces greenhouse gases produced by fossil fuels such as natural gas, coal, diesel or other fuel oil. EPA estimated for 2012 that landfill gas recovery projects had an annual environmental benefit of carbon sequestered annually by more than 21 million acres of pine or fir forests OR carbon-dioxide equivalent emissions from 238 million barrels of oil consumed OR annual greenhouse gas emissions from 20 million passenger vehicles.

Landfill gas recovery is recognized by EPA’s Green Power Partnership and 37 states as a source of green, renewable energy.

Landfill gas is generated 24 hours a day, seven days a week. Its generation is not dependent on environmental factors such as the amount of sunlight or wind. In fact, landfill gas supplies more renewable energy in the United States than solar power. Landfill gas recovery has an on-line reliability of more than 90 percent.

Find the original National Waste and Recycling Association document and Landfill Gas Renewable Energy Fact Sheet here: http://beginwiththebin.org/images/documents/landfill/Landfill-Gas-Renewable-Energy-Fact-Sheet.pdf

Connecting the dots between plastic waste and renewable energy

With the recent United Nations Conference on Climate Change, there’s a lot of talk about harnessing renewable energy.  Take a company like Unilever who’s committed to becoming ‘carbon positive’ by 2030.  Meaning, 100% of Unilever’s energy across its operations will come from renewable sources, in just 15 years!  Interesting, now let’s quickly switch gears and take a look at plastic waste and the sustainability efforts taking place there.  With the advent of Extended Producer Responsibility, brands and manufacturers will be held accountable for the post-consumer stage of its product.  What is the common disposal method for the majority of Unilever’s packaging and products?  Well, if we’re being honest and using the facts and data available, it’s all ending-up in a landfill.  Recycling comes in a distant second and composting and incineration are practically nonexistent.   However, considering this new agenda Unilever proposes, is this really a negative thing?  Not if someone can connect the dots.

Today, the bad thing about landfills is in name only.   Perhaps we need to start referring to this single most common disposal method simply as Bioreactors.  The vast majority of all MSW ends-up in “landfills” that capture and control the gases being produced in these environments and turning it into energy.  This valuable resource, Landfill Gas-to-Energy, is considered the most economical form of green energy available today, even when considering the costs of hydro, solar and wind.  Once converted, landfill gas can be utilized in many ways: to generate electricity, heat, or steam; as an alternative vehicle fuel; or sold on the energy market as a renewable “green” power or gas. All States in the U.S. (including California) utilize gas to energy as part of their green initiatives and companies like Mars, Dart, Toyota, Frito Lay, SC Johnson, Tyson Foods, Kimberly-Clark, Coca-Cola, Anheuser Busch, just to name a few, are already harnessing this energy resource.

If Unilever’s plastic products and packaging where designed for this specific environment, it could essentially power itself with the trash it produces.  Today, we have the ability to make plastic waste naturally biodegrade in these amazing anaerobic environments, Bioreactors.   The Recycling industry and the Compostable Plastics industry will continue to rail against this, but it’s time more companies rely on facts and scientific data instead of myths and emotions that simply coddle consumer’s inaccurate perceptions.  Today, and in the foreseeable future, Landfills/Bioreactors will absolutely play a major role in the way we manage waste and harness renewable energy.  The demonization of this fact is counterproductive to the goals being set.  The power is in the hands of companies like Unilever to see beyond the status quo and implement solutions that provide accountability and viability for itself and its customers.  Connecting the dots is the key to a sustainable future.