Tag Archives: landfill gas to energy

A Look at the Largest Landfill Gas-To-Energy Project in Georgia

The three new plants, combined with Republic’s Hickory Ridge landfill operation, establish Republic and Mas Energy’s landfill gas-to-energy portfolio as the largest in Georgia.

Republic Services Inc. recently unveiled a new renewable energy project with partner Mas Energy LLC that will serve the Metro Atlanta area, generating 24.1 megawatts of electricity, or enough renewable energy to power 15,665 households.

“The energy will be supplied to Georgia Power for distribution throughout the local electric grid. In all likelihood, Georgia Power’s retail electric customers in Metro Atlanta will utilize the energy,” says Michael Hall, principal and chief development officer for Mas Energy based in Ponte Vedra Beach, Fla.

Their agreement, which also includes partners Georgia Power, I Squared Capital, Crowder Construction Company and Nixon Energy, is for 20 years and will convert methane captured from three local landfills at gas-to-energy facilities in the cities of Buford, Griffin and Winder. Those landfills combined have an approximate daily volume of 7,000 tons.

The three plants, combined with Republic’s Hickory Ridge landfill operation, establish Republic and Mas Energy’s landfill gas-to-energy portfolio as the largest in Georgia,” says Michael Meuse, general manager for Republic Services in Atlanta, Ga.

Landfill gas-to-energy projects like these involve capturing methane, a byproduct of the normal decomposition of waste, from the subsurface and routing the methane to a series of engines. These engines convert the methane into electricity, which can be distributed to the local power grid.

“Methane is a greenhouse gas that is naturally produced as organic waste breaks down anaerobically in landfills,” says Meuse. “Methane gas is recovered by the gas collection systems. Gas wells are driven into the waste mass and powerful blowers are used to create a vacuum to draw out and pipe the gas to the energy plant.”

The system then converts the methane gas into a clean-burning fuel.

“The power generation facility utilizes internal combustion engines fueled by the collected and treated landfill gas to produce electricity, which is then delivered to Georgia Power’s transmission and distribution system,” says Hall.

The partnership was fueled by Georgia embracing renewable and clean energy projects within state lines.

“In 2006, Georgia’s Public Service Commission established the ‘QF Proxy Unit Methodology’, whereby qualifying facilities in the state of Georgia were eligible to enter into power purchase agreements (PPA) with Georgia Power that recognized the full value of renewable and clean energy to Georgia consumers,” says Hall. “Mas Energy secured its PPA in early 2014 and brought Republic Services a proposal to build plants at Republic’s Atlanta sites.”

Republic and Mas Energy had previously collaborated on a project at Republic’s now-closed Hickory Ridge landfill site.

“Based on that positive experience, the agreements were made between Mas Energy and Republic Services to develop the (recently announced) projects,” says Hall.

Meuse says that according to the U.S. Environmental Protection Agency (EPA) calculations, energy produced from landfill gas-to-energy facilities will offset the equivalent of: carbon dioxide (CO2) emissions from 127,795,779 gallons of gasoline; carbon sequestered by 930,919 acres of U.S. forests; and carbon dioxide (CO2) emissions from 6,090 railcars’ worth of coal burned.

“Projects such as these reduce reliance on non-renewable resources (coal and natural gas), reduce methane emissions from the site, and eliminate emissions from flares previously used for gas destruction,” he says.

Read original article in Waste 360 written by Megan Greenwalt @ http://beta.waste360.com/gas-energy/look-largest-landfill-gas-energy-project-georgia?utm_test=redirect&utm_referrer=

Finding Circularity with Single Cycle Packaging

Let’s look at the issue of plastic waste and how we can use the circular economic model to resolve some of the problems that we face, that’s ultimately spilling into our environment.   Some 300 million tons of plastic is manufactured globally each year and “plastic packaging” accounts for about 78 million tons of it. That’s 172 billion pounds of non-reusable, non-recyclable and unequivocally unaccounted for plastic waste. This includes items such as flexible packaging, films, foamed material, small items, contaminated material, complex/multi-layer applications and anything colored, where recycling and reusability are practically non-existent.  These are single use, single cycle, applications.  Also, there’s unanimous agreement that the vast majority of all these applications are destined for a landfill. And these are not the demonized landfills from days gone by; I’m talking about today’s modern landfills that are now energy generating power plants.

This discussion is not for the consumer, this is for the difference makers, the sustainability managers, the leaders that can make a difference. They’re the companies that, according to Extended Producer Responsibility (EPR), are to be held accountable for the post-consumer aspect of its products and packaging. I’m talking about companies like Kraft, Coca-Cola, Nestle, PepsiCo, P&G, General Mills, Johnson & Johnson, Kellogg, Mars, Unilever and all the brands under them.

companies

We all know, or the data tells us, that this is the single most common disposal method of all this material. It should also be known that waste-to-energy has proven to be one of our greatest resources for alternative energy.   Whether it’s an anaerobic digester, a bioreactor or today’s modern landfills, most plastic packaging is ultimately ending-up in a unique anaerobic environment that is controlling and converting biogas into clean energy. Some of these companies utilize the energy from landfills, yet they haven’t put the pieces together to figure out that the very trash that their products produce could be the feedstock for the alternative energy resource they’re already harnessing. Too often, the end-of-life aspect is ignored or swept under the rug with theoretical contemplations about disposal methods that simply don’t exist and senseless confusion.

Yet, nearly all 50 states include landfill gas-to-energy as part of their green energy portfolios. It’s recognized by the United Nations, the EPA, as well as dozens of Fortune 500 companies and government organizations that all utilize energy from landfills.  However, the dots just aren’t being connected.   I recently asked the Director of Sustainability for one of these 10 companies about this topic and they honestly said that they’ve never heard of such a thing and can’t imagine that we’ll ever get our energy from slowly decomposing waste. Yet, three years ago this same company won top honors by the EPA as one of the largest on-site green power generators because of its use of Landfill Gas-to-Energy (LGE) to power its manufacturing facilities! Seriously, why the disconnect between what companies are doing and what companies should and could be doing to think more circular? Imagine if you will, this same company implementing landfill biodegradable packaging and then using the energy from landfill gas.  This is true circular economy thinking, especially when energy needs will increase 50% in the next couple decades.  Without requiring any change to the infrastructures in place today and without modifying consumer behavior, these single use applications can be designed to cycle at a higher level.

I’ve heard the idea that plastics should be made NOT to biodegrade in a landfill because one day we might want to mine for this material. This is completely asinine and assumes that we’ll have a need to mine for this material within the next couple hundred years.  The reason being, plastic will eventually biodegrade, we just won’t be able to capture the gases produced if we wait too long. Instead, if these applications were designed to biodegrade within the managed timeframe of these anaerobic environments, for every million pounds of plastic waste that enters a LGE facility, it offers the equivalence of over 422,000 pounds of coal, 52,000 gallons of gasoline and more than 1100 barrels of oil, which is used to power homes and factories, as well as fueling vehicles!

The technology is readily available to make most any polymer application anaerobically biodegradable, or commonly referred to as Landfill Biodegradable.   The technology does not change any processing parameters, there’s no change in any performance characteristics, and it’s not expensive. In fact, for about the price of a Tall Cappuccino, tens of thousands of Starbucks Coffee cups can be designed to biodegrade in a landfill.   These multi-layer applications are not being reused or recycled, but they are going to a landfill. So what gives, is it because of the misguided concept that landfills are bad? Perhaps it’s time to reevaluate the integral role of this disposal method that rely so heavily on; a lot has changed since the 80’s. In fact, you could say that we’re now diverting 75% of all MSW away from landfills, because the type of landfills that are being vilified are becoming obsolete – quickly.

A single loop system for handling our plastic waste is impractical, circularity does not mean singularity, there’s too much at stake, too much potential, and the infrastructure is already in place so there’s no need to implement Cass Sunstein’s “nudging” tactics to change consumer behavior. Besides, the fact that none of this material can/will be recycled is not because of consumer behavior, its feasibility and market demand, and it’s just not there. A company wanting to take accountability for its packaging needs to answer one candid question: What is the common disposal method of the application? Then, do what can be done to take advantage of this fact and understand the value in having our waste integrate into our waste infrastructures instead of working against it. The facts, the science and all the data, prove that there’s an enormous opportunity being overlooked.  I believe the circular economic model can work for plastics, but not if it’s simply a rebranding of the last 40+ years of rhetoric.

Landfill Power: Turning Gas into Energy

Paul Pabor, VP of Renewable Energy with Waste Management explains how they turn landfill gas into energy.

One source of renewable energy comes from landfills. Waste Management generates enough energy from its landfills to power over 400,000 homes (equivalent to 7,000,000 barrels of oil). Through a process called “landfill-gas-to-energy”, they are ensuring that the waste they collect does not necessarily go to waste.

Did you know that Waste Management produces more energy than the entire solar industry in the US.

How does the landfill gas to energy circle work? Biodegradable materials are disposed of into landfills which then biodegradable creating landfill gas which is captured and collected and sent to generators to provide energy for communities nearby.

Depending on where you live, when you turn on a light switch, that energy could be coming from the biodegradable materials thrown away into a landfill. Your plastics enhanced with ENSO RESTORE landfill biodegradable additive also biodegrade within the landfill and contribute to the landfill gas to energy circle.

From apple to light-bulb and now plastics to energy. Landfill gas-to-energy is some really Back to the Future kind of stuff. Its time we expand the way we think about energy!

Energy from Landfill Gas

Begin with the Bin – Be smart with your recycling and garbage.

As landfill waste decomposes, it produces methane and other gases. More than 75 percent of this gas is available for use as “green” energy. Landfill gas can be used to generate electricity, or it can be piped directly to a nearby manufacturing plant, school, government building and other facility for heating and cooling.

Trash, buried beneath a layer of soil, decomposes and produces gas. Landfill operators place collection wells that act like straws throughout a landfill to draw out the methane gas. The gas is then piped to a compression and filtering unit beside the landfill. Technicians make sure that the gas is filtered properly before it is sent to its end user. The entire process is carefully managed to prevent odors and leakage of waste material.

According to the Environmental Protection Agency (EPA), as of July 2014, there are 636 operational projects in 48 states generating nearly 2,000 megawatts of electricity per year and delivering enough renewable energy to power nearly 1.1 million homes and heat over 700,000 homes. It is worth noting that the Nobel Prize-winning Intergovernmental Panel on Climate Change states that landfill gas recovery directly reduces greenhouse gas emissions. The EPA estimates that using methane as renewable energy instead of oil and gas has the annual environmental and energy benefits equivalent to:

  • The greenhouse gas emissions from more than 33 million passenger cars
  • Or eliminating carbon dioxide emissions from over 11.6 billion gallons of gasoline consumed
  • Or sequestering carbon from over 22.1 million acres of pine or fir forests.
  • Higher energy prices have helped these activities become one of the fastest growing segments of our industry. As of July 2013, EPA estimates that about 440 additional landfills currently are candidates for landfill-gas-to-energy projects, with the potential to produce enough electricity to power 500,000 homes. And continued innovation will allow us to expand the use of landfill gas for energy. One example is a “bioreactor”: a landfill where liquids are added to the waste and re-circulated to make the trash decompose faster and speeds the production of landfill gas. This is not a hypothetical technology – this is happening now.

    Download our new Landfill Gas Renewable Energy Fact Sheet.

    Read the original Begin with the Bin article here: http://beginwiththebin.org/innovation/landfill-gas-renewable-energy

    Landfill Gas & Renewable Energy

    Begin with the bin – Be smart with your recycling and garbage.

    Imagine a future where communities are powered by the trash they throw away – that future is here. Through innovation and leadership from members of the National Waste & Recycling Association and others associated with the solid waste industry, our waste can now be tapped as a source of renewable and sustainable energy. This happens primarily through two technologies: landfill-gas-to-energy projects and waste-to-energy facilities.

    According to the U.S. Department of Energy’s Energy Information Administration, the solid waste industry currently produces nearly half of America’s renewable energy. Energy produced from waste and other forms of biomass matches almost the combined energy outputs of the solar, geothermal, hydroelectric, and wind power industries.

    The use of landfill-gas-to-energy and waste-to-energy enhances our national security by reducing our reliance on foreign energy. These activities also help reduce emissions that cause climate change, because landfill-gas-to-energy projects involve capturing methane (a greenhouse gas), while waste-to-energy activities displace fossil fuel sources and lower landfill methane emissions by diverting waste from landfills.

    Our members are dedicated to advancing processes and technologies to help meet some of the biggest challenges of the 21st century, making our country a better place to live and work for current and future generations.

    Original article found on Begin with the Bin – Be smart with your recycling and garbage website: http://beginwiththebin.org/innovation/landfill-gas-renewable-energy

    Is it time to rethink recycling?

    Updated by Amy Westervelt on February 13, 2016, 10:00 a.m. ET

    Originally published on Ensia.

    Criticize recycling and you may as well be using a fume-spewing chainsaw to chop down ancient redwoods, as far as most environmentalists are concerned. But recent research into the environmental costs and benefits and some tough-to-ignore market realities have even the most ardent of recycling fans questioning the current system.

    No one is saying that using old things to make new things is intrinsically a bad idea, but consensus is building around the idea that the system used today in the United States, on balance, benefits neither the economy nor the environment.

    In general, local governments take responsibility for recycling. The practice can deliver profits to city and county budgets when commodity prices are high for recycled goods, but it turns recycling into an unwanted cost when commodity markets dip. And recycling is not cheap. According to Bucknell University economist Thomas Kinnaman, the energy, labor, and machinery necessary to recycle materials is roughly double the amount needed to simply landfill those materials.

    Right now, that equation is being further thrown off by fluctuations in the commodity market. For example, the prices for recycled plastic have dropped dramatically, which has some governments, many of which have been selling their plastic recyclables for the past several years, rethinking their policies around the material now that they may have to pay for it to be recycled. It’s a decision being driven not by waste management goals or environmental concerns, but by economic reasons that could feasibly change in the next couple of years.

    Not only that, but in some cases recycling isn’t even what’s best for the environment.

    The solution, according to economists, activists, and many in the design community, is to get smarter about both the design and disposal of materials and shift responsibility away from local governments and into the hands of manufacturers.

    Material world

    Because most people dispose of used aluminum, paper, plastic, and glass in the same way — throw them into a bin and forget about them — it’s easy to think that all recycled materials are created equal. But this couldn’t be further from the truth. Each material has a unique value, determined by the rarity of the virgin resource and the price the recycled material fetches on the commodity market. The recycling process for each also requires a different amount of water and energy and comes with a unique (and sometimes hefty) carbon footprint.

    All of this suggests it makes more sense to recycle some materials than others from an economic and environmental standpoint.

    A recent study by Kinnaman provides research to back up that assertion. Using Japan as his test case — because the country makes available all of its municipal cost data for recycling — Kinnaman evaluated the cost of recycling each material, the energy and emissions involved in recycling, and various benefits (including simply feeling good about doing something believed to have an environmental or social benefit). He came to the controversial conclusion that an optimal recycling rate in most countries would probably be around 10 percent of goods.

    But not just any 10 percent, Kinnaman cautions. To get the most benefit with the least cost, we should be recycling more of some items and less — or even none — of others. “Although the optimal overall recycling rate may be only 10%, the composition of that 10% should contain primarily aluminum, other metals and some forms of paper, notably cardboard and other source[s] of fiber,” he wrote in a follow-up piece in the Conversation. “Optimal recycling rates for these materials may be near 100% while optimal rates of recycling plastic and glass might be zero.”

    Kinnaman’s assertions about plastic and glass have to do with the cost and resources required to recycle those materials versus the cost and availability of virgin materials. But he’s not without his critics, particularly on the plastics front, given that he describes the environmental impact of making virgin plastic as “minimal,” a conclusion based more on the emissions and energy required to recycle plastic than the fact that the stuff persists in the environment forever. Still, Kinnaman’s point — that we need to be choosier about what we recycle — has resonated with environmentalists and waste management experts alike.

    The commodities conundrum

    Cardboard is among the materials for which recycling is most economically and environmentally beneficial.

    We may also need to find a way to decouple recycling from the commodities market. What’s happening with plastics right now is a good example of why. In the eastern US, to cite just one example, prices for recycled PET plastic fell from 20 cents a pound in 2014 to less than 10 cents a pound earlier this year, while recycled HDPE prices dipped from just under 40 cents a pound in 2014 to just over 30 cents per pound today.

    That’s thanks to a confluence of factors: Oil prices have dropped from US$120 in 2008 to less than US$35 a barrel today; growth in the Chinese recycled goods market dropped from its typical steady, double-digit annual growth to 7 percent in 2015; and the dollar is strong, which makes American recycled materials more expensive than their European or Canadian counterparts.

    “The price drop has come at a time when a lot of cities have severe budget constraints anyway, so some communities are beginning to look more skeptically at recycling,” says Jerry Powell, a 46-year veteran of the recycling industry and longtime editor of the recycling industry trade publication Resource Recycling. “But three years ago, when we had record-high prices, they were expanding their recycling efforts.”

    Powell adds that changing technologies can also play a role in determining what does or does not make sense from a recycling standpoint. Recycled plastic, for example, was largely used in carpeting 15 years ago, but these days more of it is making its way back into beverage bottles.

    “Nestlé has really led the way on this — they knew they needed more recycled material and so they have invested in processing infrastructure and agreed to pay slightly more for recycled plastic,” Powell says. “Fifteen years ago there was zero recycled plastic going toward making new bottles. Now more is going into bottles because the technology has improved, we’re collecting more plastic, and consumers are more aware and are asking for more recycled content.”

    If not recycling, then what?

    Although recycling may not be an optimal fate for plastics, neither is landfilling. As a result, governments and businesses are looking into options such as reducing use and returning used materials to the source.

    That type of “closed loop” thinking is where solutions to today’s recycling woes tend to be focused. Extended producer responsibility, or EPR, laws for packaging would require manufacturers to take back the plastic, cardboard, and form-fitting foam their products come in, ideally with the purpose of recycling and reusing it in future packaging. Such policies essentially assign manufacturers the task of collecting and processing the recyclable packaging materials they produce.

    Companies can set up any sort of recycling system they want — they can continue to fund curbside pickup and pay a recycler to process the material, or they can switch to some sort of drop-off method and opt to do the recycling in house — the only stipulation being that they have some sort of a take-back and recycling program in place.

    EPR not only lets local governments off the hook for paying for recycling but also effectively divorces recyclable materials from the commodities market: Companies could opt to sell the recycled material they collect and generate, but they would also have another use for the materials (producing more packaging for their own stuff) should the commodities market crash.

    Currently, several European countries — including Belgium, Germany, the United Kingdom, and Ireland — have EPR laws, as do Australia and Japan. In Canada, the province of British Columbia has province-wide EPR laws, while Ontario EPR laws cover about 50 percent of disposable goods.

    Germany’s EPR laws for packaging have been in place the longest (since 1991) and offer the clearest picture of the impact these laws have on waste management. According to an in-depth case study of Germany’s EPR system conducted by the Organisation for Economic Co-operation and Development, the country’s EPR laws were credited with reducing the total volume of packaging produced in the country by more than 1 million metric tons (1.1 million tons) from 1992 to 1998 alone, representing a per capita reduction of 15 kilograms (33 pounds).

    “Significant design changes were made to reduce the amount of material used in packaging,” the report notes. “Container shapes and sizes were altered to reduce volume, and thin-walled films and containers were introduced.”

    The overall market showed a noticeable shift away from plastics as well, with a reduction in total volume from 40 to 27 percent. Germany is one of the European Union’s top recyclers, with 62 percent of all packaging being recycled.

    Efforts to pass EPR laws for packaging in 2013 in Minnesota, North Carolina, and Rhode Island met with opposition from the consumer packaged goods industry. But according to Matt Prindiville, executive director of the nonprofit Upstream (formerly the Product Policy Institute), which has long led the charge for packaging EPR laws in the US, the current commodities crash in recycling is making EPR more attractive to local governments.

    “The conditions for recycling in the US have only gotten worse,” Prindiville says. “Commodity markets have collapsed, and the revenue cities were used to getting to offset the cost of covering recycling have dried up. That’s driving the conditions for EPR.”

    The goal with EPR is to balance the needs of all stakeholders, from companies to recyclers to citizens. If implemented correctly, Prindiville says, it should actually benefit companies, not threaten them. “This is not a tax on your products, it’s about figuring out how to get stuff back and do something with it, and you figure out the financing yourself,” he says. “It is a market-based system.”

    Burning — and better

    Meanwhile, according to a 2012 report from the nonprofit As You Sow foundation, some $11.4 billion worth of valuable PET, aluminum, and other potentially useful packaging materials are being landfilled each year. A more recent report, published this year by the World Economic Forum and Ellen MacArthur Foundation, finds that 95 percent of the value of plastic packaging material alone, worth $80 billion to $120 billion annually, is lost to the economy.

    While Kinnaman makes the case that landfilling those materials doesn’t cost as much as once thought, it’s hard not to see those materials as wasted if they’re just sitting in a hole in the ground. Plus, the MacArthur Foundation report points out that plastic packaging generates negative externalities for companies, such as potential reputational and regulatory risks, valued conservatively by the United Nations Environment Programme at $40 billion.

    “Given projected growth in consumption, in a business-as-usual scenario, by 2050 oceans are expected to contain more plastics than fish (by weight), and the entire plastics industry will consume 20% of total oil production, and 15% of the annual carbon budget,” the news release accompanying the MacArthur Foundation report states.

    That’s precisely why some countries — Sweden, for example — have come back around to the idea of incinerating garbage now that technology has evolved to reduce emissions from incinerators. Thirty-two garbage incinerators in Sweden now produce heat for 810,000 households and electricity for 250,000 homes.

    The US plastics industry has been pushing for a similar strategy for dealing with plastic waste — particularly the latest class of thinner, lightweight plastics that don’t fit into existing recycling streams — but critics note that burning plastic still emits toxic chemicals. Instead, Prindiville says he’d like to see the US work toward building a circular economy, as many European countries are trying to do. “Forward-looking CEOs are really drilling down and questioning what is the role of these materials? What’s the role of packaging? And how do we ensure a cradle-to-cradle loop instead of wasting resources?” he says.

    Bridgett Luther, founder of the Cradle to Cradle Products Innovation Institute, says that while legislation might help, it’s when companies also see the value in these materials that things will really change.

    To that end, some companies have already created their own take-back programs, motivated by innovation and market forces rather than regulation. Luther points to the carpet industry as an example, with companies such as Shaw Floors and Interface routinely taking their carpet back to recycle it into new carpet. In the beverage industry, Coca-Cola made a commitment to use 25 percent recycled plastic in its bottles by 2015, a number it had to downgrade due to high cost and short supply of recycled material. Walmart is in a similar situation, currently struggling to find the supply to meet its goal of using 3 billion pounds (1 billion kilograms) of recycled plastic in packaging by 2020.

    “That material is as good as virgin,” Luther says. “There’s a lot of interesting innovation that could happen and could happen very quickly if groups of industry got together and said, ‘We’re going to come up with our own take-back program.’”

    The ultimate solution, according to Prindiville, the MacArthur Foundation team, and Luther, is better design of products and packaging further upstream to plan better for end of life and avoid the waste issue altogether. “You can regulate all day long but it’s easier to incentivize,” Luther says. “And much more interesting.”

    Read the quoted article here: http://www.vox.com/2016/2/13/10972986/recycling

    A final thought, by Danny Clark – President ENSO Plastics:

    Its confusing and sometimes funny to think about the efforts we humans go through trying to solve the problems of the world. The solutions usually range from the simple to the extremely complex. What I find amusing is how many so called “professionals” push for the extremely complex and costly solutions that require legislation and subsidies to make work, when in the end many of the simplest solutions work much better.

    How long do we continue to debate the issue of how to handle our waste, and how many billions more do we have to spend before the realities of the “recycle everything” religion comes to the fact and science based conclusion that we should be making our materials integrate into the existing waste environments that we have today.

    Today, the majority of our trash is already being disposed of into landfills. Over 74% of municipal solid waste is disposed of into landfills that convert landfill gas to green energy. These are already the facts, no need to spend more money, no need to educate, no need to do anything different other than making our plastics fit into these environments.

    ENSO RESTORE is a additive that is added into standard plastics to make them landfill biodegradable as well as recyclable. If all plastics were enhanced with ENSO RESTORE we would address nearly 100% of our plastic waste issue. Imagine that for a moment!

    California Energy Commission Recognizes the Value in Landfill Gas to Energy

    Its no argument that California is home to the largest population in the United States. With over 37,000,000 California residents, Californians no doubt produce A LOT of waste. In fact the state produces over 42 million tons of waste per year. The majority, I mean the vast majority of this waste being disposed of into landfill environments. When organic material (not the Whole Foods organic, the carbon based organic) is disposed of into landfill environments the biodegradation process of organics in these type of environments (low oxygen) produces a tremendous amount of methane gas. This gas, (methane) is a very potent greenhouse gas and if not handled properly would be very bad to release into the atmosphere. Luckily we have solutions for handling the methane produced from landfills. The California Energy Commission recognizes that a good solution to handling the methane gas that is generated from landfill sites it to collect the gases and convert it to green energy.

    As of July 2013, California has 78 operational landfill gas recovery projects with 32 additional landfill candidates. In 1995, the 42 landfill gas to energy sites produced a total electricity production of about 246 megawatts. Today with over 36 additional sites the production of electricity is much higher.

    Landfill gas to energy has been commercially utilized in California now for several decades with the state including landfill gas to energy as part of its green energy portfolio.

    If California and nearly all other states within the United States recognize the value in converting landfill gas into energy, wouldn’t it make since that we take measures to ensure that the waste that goes into landfills would biodegrade within the managed time-frame of that landfill? If you answered yes, you would be thinking the same way we do and this is why our ENSO RESTORE landfill biodegradable additive is such a value added technology. Plastics enhanced with ENSO RESTORE allow brands, manufacturers and consumers to know that regardless of it that plastic item will end up disposed of in a recycle stream or landfill it will provide a value outlet and will no longer be looked at as just waste or garbage.

    You can view the California Energy Commissions website on landfill gas to energy here: http://www.energy.ca.gov/biomass/landfill_gas.html

    Just the Facts! Landfill Gas Renewable Energy

    What is landfill gas?
    Landfill gas is the product of the anaerobic decomposition of organic materials in a landfill. Methane comprises approximately half of this gas and can be converted into a renewable energy product. The EPA established the Landfill Methane Outreach Program to promote landfill gas beneficial use projects by partnering with states, local governments and the private sector. This program is a cornerstone of federal renewable energy initiatives.

    What kind of energy can landfill gas produce?
    Electricity generation is the most common energy recovery use, with two-thirds of existing projects producing this form of renewable energy. One third of the projects directly use landfill gas in boilers, dryers, kilns, etc.

    Companies using landfill gas include BMW, SC Johnson, Tropicana, Ford, Dupont, Honeywell, Sunoco, General Motors, Fujifilm, Dart, Stouffers, Anheuser Busch, Frito-Lay, and many more.

    How many landfills convert gas to energy?
    According to EPA’s Landfill Methane Outreach program, as of July 2013, 621 landfill gas energy recovery programs are operating in the United States and approximately 450 other landfills are good candidates for these projects.

    What are the energy benefits of using landfill gas as a renewable energy source?
    As of October, 2012, existing recovery projects produced annual amounts of 14.8 billion kilowatt-hours of electricity and 102 billion cubic feet of landfill gas for direct use.

    EPA estimates these products provide annual energy benefits of powering 1 million homes — a little fewer than in the state of Nevada and heating 736,000 homes — about the number of homes in Maine.

    What are the environmental benefits of using landfill gas as a renewable energy?
    In addition to the energy conservation benefits provided by converting landfill gas into a renewable energy product, reduces greenhouse gases produced by fossil fuels such as natural gas, coal, diesel or other fuel oil. EPA estimated for 2012 that landfill gas recovery projects had an annual environmental benefit of carbon sequestered annually by more than 21 million acres of pine or fir forests OR carbon-dioxide equivalent emissions from 238 million barrels of oil consumed OR annual greenhouse gas emissions from 20 million passenger vehicles.

    Landfill gas recovery is recognized by EPA’s Green Power Partnership and 37 states as a source of green, renewable energy.

    Landfill gas is generated 24 hours a day, seven days a week. Its generation is not dependent on environmental factors such as the amount of sunlight or wind. In fact, landfill gas supplies more renewable energy in the United States than solar power. Landfill gas recovery has an on-line reliability of more than 90 percent.

    Find the original National Waste and Recycling Association document and Landfill Gas Renewable Energy Fact Sheet here: http://beginwiththebin.org/images/documents/landfill/Landfill-Gas-Renewable-Energy-Fact-Sheet.pdf

    Fueled by the Future | Back to the Future | Presented by Toyota Mirai

    Watch the future become reality as two Back to the Future icons see trash get turned into fuel for a car! And some people believe biodegradation doesn’t happen in a landfill. Silly them, this must seem like pure magic….

    Paper beats plastic? How to rethink environmental folklore

    Most of us want to do the right thing when it comes to the environment. But things aren’t as simple as opting for the paper bag, says sustainability strategist Leyla Acaroglu. A bold call for us to let go of tightly-held green myths and think bigger in order to create systems and products that ease strain on the planet.