Tag Archives: PLA

Pepsi follows Green washed Consumers

This is a great article. Companies should be going with the best environmental packaging out there, not just what consumers believe is the best environmental packaging because they have suffered from greenwashing or a lack of access to the facts.  How amazing would it be to have a bottle made from renewable resources & with the ENSO additive. A renewable, biodegradable & recyclable bottle, that would be amazing.

Consumer preferences driving PepsiCo sustainability efforts

By Mike Verespej | PLASTICS NEWS STAFF 

Posted August 11, 2011

PURCHASE, N.Y. (Aug. 11, 12:40 p.m. ET) — For a brand owner like PepsiCo, sustainable packaging doesn’t just mean making decisions on a complex set of resource, energy and environmental issues. It also means that you have to understand and determine whether consumers will view what you do as sustainable.

“Everything needs to be in sync with the brand identity, and you have to ask yourself what is the right message so the consumer understands that what you are doing is sustainable,” said Denise Lefebvre, vice president of global packaging for food and beverage giant PepsiCo. “There already is confusion among the public about sustainability, so all our messages have to be clear, consistent and in sync.”

Lefebvre, who was director of advanced research for beverage packaging for the Purchase, N.Y., soft-drink giant until a recent promotion, also said that when it comes to sustainable packaging, much of what brand owners focus on is driven by “consumer desires and consumer thinking.”

“Consumers are looking for technologies and innovations where it is readily evident to them what to do with that product and how it benefits them and the environment,” Lefebvre said in a recent interview. “The benefit has to be clear to them and right in their sweet spot. Our messages give us an opportunity to simplify things for consumers.”

With that in mind, the company has focused on producing increasingly lightweight PET bottles, developing technology to make PET bottles from plant-based resources and agricultural and food waste, and putting Dream Machine recycling bins and kiosks into place in cities to increase the number of bottles and cans that are recycled, she said.

“When consumers see a bottle that is fully recyclable and ultra-lightweight, it helps them in terms of making their purchase,” Lefebvre said. “The consumer understands source reduction and the use of less material. It is tangible and they can understand that. So if we can create technologies to push that faster, that would be ideal.”

Similarly, consumer perceptions are one of the driving reasons why PepsiCo is working, in partnership with others, to make a PET bottle completely from plant-based materials, including switch grass, pine bark and corn husks.

“If I tell [consumers], it’s 100 percent renewable PET, they understand it and they get it because they want things straightforward,” Lefebvre said.

Since the firm announced in March that it had developed a 100 percent renewable bottle, it has received positive consumer feedback, she said — although that bottle won’t eat go into pilot production until sometime in 2012, and even then, in limited quantities of 100,000-500,000 bottles.

“Consumers like it because you have eliminated fossil-based products [and] they believe that pulling oil out of the ground” is not the route to use anymore, Lefebvre said.

PepsiCo is also working to make its planned renewable PET bottle from organic waste from its food businesses, including orange and potato peels, oat hulls and other agricultural byproducts.

“Consumers have made it clear that they want us to use non-food resources, or food or agricultural waste [for bioresins] because it doesn’t detriment the environment and it doesn’t take away from food supplies,” she said.

Although many of PepsiCo’s sustainability package initiatives are driven by consumer perceptions, the firm realizes it can’t do things that are not sustainable just because consumers perceive them to be, she said. “Consumers would love an oxo-biodegradable bottle,” Lefebvre said “But right now, the technologies out there would do more harm than good.

“So to deliver something that would be more detrimental to the environment … It would be wrong and it would be greenwashing.”

Similarly, PepsiCo is not using polylactic bioresin for bottles because she said the material does not have the necessary barrier properties and is problematic in the PET recycling stream.

During a presentation at the Bioplastek conference in New York in late June, Lefebvre said PepsiCo’s objective is to create “performance with a purpose” in its packaging.

“Our objective is to make a 100 percent renewable, sustainable, non-fossil-fuel-based PET bottle in a closed-loop system using agriculture waste,” she said. “We want performance identical to what we have now: a product that is fully recyclable and a product that significantly reduces the carbon footprint.”

A number of companies now make non-petroleum-based ethylene glycol — which is 30 percent of the formulation of PET. And roughly a half-dozen firm say that they have demonstrated in a lab that they can make paraxylene, the building block for terephthalic acid, which constitutes the rest of PET, or plant-based terephthalic acid.

PepsiCo’s main competitor, Coca-Cola Co., has been making its PlantBottle from conventional terephthalic acid and renewable ethylene glycol since December 2009. H.J. Heinz Co. also began using the Coca-Cola PlantBottle for its 20-ounce ketchup containers in July.

Heinz expects to sell 120 million PlantBottle ketchup bottles in 2011; Coca-Cola expects this year to package 5 billion beverages globally in 15 countries in the PlantBottle compared to 2.5 billion last year.

PepsiCo has not discussed technology details for making the renewable terephthalic acid needed for a PET bottle manufactured 100 percent from renewable resources.

“We can buy and source the renewable ethylene glycol from any number of sources,” Lefebvre said. “That has been around for awhile. The key is the T piece [terephthalic acid]. That is critical in driving a renewable PET bottle to a mass scale.”

PepsiCo plans to model several different types of chemistry in its pilot -cale project to determine their efficiency to make renewable terephthalic acid. “There are a lot of emerging technologies that we will be evaluating, and they all have their pros and cons,” she said. “We’re very open to looking at them all and would be comfortable using several of them,” she said.

“We don’t make PET. We’re not going to. So we need the quality to be right.”

Lefebvre said she expects PepsiCo to announce soon on its sourcing strategies for renewable PET bottles. None of those strategies, she said, mean the firm will reduce its efforts to boost recycling of its plastic bottles or aluminum cans.

Since it embarked on its Dream Machine recycling initiative in April 2010, PepsiCo has placed 2,600 Dream Machines bins and reverse-vending kiosks in more than 30 states — at supermarkets, on city streets and other public venues.

The recycling bins are similar to trash cans, but they’re painted Pepsi blue with a recycling message on them. The computerized kiosks give reward points for each bottle or can recycled, which consumers can redeem online at greenopolis.com. — a partner in the program along with Waste Management subsidiary WM GreenOps LLC.

PepsiCo has also developed a recycling initiative for schools, called Dream Machine Recycle Rally, which rewards schools with points for each non-alcoholic plastic bottle or aluminum can students bring to school for recycling.

“It is a self-supportive strategy,” Lefebvre said of the initiatives. “As the program proliferates, it reaffirms to the consumer that recycling is important, and that recycling is just as good as renewables.” The Dream Machines also help the firm bring up recycling rates and get the material it needs to incorporate recycled content in its products, she said.

Just last week, PepsiCo announced that in August it will market the first plastic soft drink bottle to be made from 100 recycled PET in North America. The bottle, 7UP EcoGreen, will be used for diet and regular 7UP sold in Canada. It is expected to reduce the amount of virgin PET used for that product by 6 million pounds a year.

“We want to use more recycled PET” in all plastic bottles, Lefebvre said. “It is a matter of obtaining the right quality and getting the material — which is in short supply. “

To augment PepsiCo’s supply of recycled PET, the firm last year agreed to buy the majority of its bottle-grade PET pellet and flake from the new CarbonLITE plant in Riverside, Calif., which is scheduled to launch by Sept. 30 with nameplate annual capacity of 100 million pounds.

Quick Fixing the Food Crisis

I recently came across this article posted on the Scientific American website A quick fix to the food crisis. The writer, Timothy Searchinger made some really great points. Take a moment to enjoy the article below!

food crisis

 

 

A Quick Fix to the Food Crisis
Curbing biofuels should halt price rises By Timothy Searchinger | June 16, 2011 |


When food prices rose steeply in 2007 and climaxed in the winter of 2008, politicians and the press decried the impact on the billion or so people who were already going hungry. Excellent growing weather and good harvests provided temporary relief, but prices have once again soared to record heights. This time around people are paying less attention.
The public has a short attention span regarding problems of the world’s have-nots, but experts are partly to blame, too. Economists have made such a fuss about how complicated the food crisis is that they have created the impression that it has no ready solution, making it seem like one of those intractable problems, like poverty and disease, that are so easy to stash in the back of our minds. This view is wrong.

To be sure, reducing hunger in a world headed toward more than nine billion people by 2050 is a truly complicated challenge that calls for a broad range of solutions. But this is a long-term problem separate from the sudden rise in food prices. High oil prices and a weaker dollar have played some part by driving up production costs, but they cannot come close to explaining why wholesale food prices have doubled since 2004. The current price surge reflects a shortfall in supply to meet demand, which forces consumers to bid against one another to secure their supplies. Soaring farm profits and land values support this explanation. What explains this imbalance? Crop production has not slowed: total world grain production last year was the third highest in history. Indeed, it has grown since 2004 at rates that, on average, exceed the long-term trend since 1980 and roughly match the trends of the past decade. Even with bad weather in Russia and northern Australia last year, global average crop yields were only 1 percent below what the trends would lead us to expect, a modest gap.

The problem is therefore one of rapidly rising demand. Conventional wisdom points to Asia as the source, but that’s not so. China has contributed somewhat to tighter markets in recent years by importing more soybeans and cutting back on grain exports to build up its stocks, which should serve as a warning to policy makers for the future. But consumption in China and India is rising no faster than it has in previous decades. In general, Asia’s higher incomes have not triggered the surge in demand for food.
That starring role belongs to biofuels. Since 2004 biofuels from crops have almost doubled the rate of growth in global demand for grain and sugar and pushed up the yearly growth in demand for vegetable oil by around 40 percent. Even cassava is edging out other crops in Thailand because China uses it to make ethanol.

Increasing demand for corn, wheat, soybeans, sugar, vegetable oil and cassava competes for limited acres of farmland, at least until farmers have had time to plow up more forest and grassland, which means that tightness in one crop market translates to tightness in others. Overall, global agriculture can keep up with growing demand if the weather is favorable, but even the mildly poor 2010 growing season was enough to force a draw down in stockpiles of grain outside China, which sent total grain stocks to very low levels. Low reserves and rising demand for both food and biofuels create the risk of greater shortfalls in supply and send prices skyward.

Although most experts recognize the important role bio¬fuels play, they often underestimate their effects. Many of them misinterpret the economic models, which understate the degree to which biofuels drive up prices. These models are nearly all designed to estimate biofuels’ effects on prices over the long term, after farmers have ample time to plow up and plant more land, and do not speak to prices in the shorter term. Commentators also often lump all sources of crop demand together without recognizing their different moral weights and potential for control. Our primary obligation is to feed the hungry. Biofuels are undermining our ability to do so. Governments can stop the recurring pattern of food crises by backing off their demands for ever more  biofuels.

 

Photo- Scientific American

Industrial farming linked to massive Red Tides

 

I just finished watching the movie Dirt a film that (among other concepts) shows viewers the negative impacts of industrial farming practices and it really got me thinking….

Living on Florida’s gulf coast, from time to time the Tampa Bay Area is plagued by the infamous red tide. For those of you not familiar, red tide is created primarily by excess fertilizers used in farming that runoff into rivers and streams. These fertilizers eventually end up in coastal areas. The excess nutrients become a food source for phytoplankton to feed on, creating massive algae blooms in high concentration that leaves red colored trails in the water.

As the algae blooms die, microorganisms feed on the algae and deplete the dissolved oxygen levels in the water. Fish and other submarine life perish without vital oxygen. Also, one species of algae often associated with red tide produces neurotoxins that can be harmful to birds, humans, and other land animals. Red tide creates polluted beaches, full of dead fish and makes swimming and beach activities unsafe.

Christopher George- Aquatic Biologist
Tampa, FL

After thinking about all of this, my mind really started turning…With all of the concerns about the methane emissions of biodegradable plastics, what about the excess of fertilizers used when farming corn, is anyone concerned with how that will effect the earth/waters? Is there any fix that doesn’t have any faults? Does the spread of articles on the internet that misguide readers give us a sense of false concerns ? ( See my Is the methane released from biodegradable plastic harmful? Blog )

These are all things to definitely think about and talk about! Make sure to leave any of your thoughts in the comment box below, I look forward to this discussion!

-Megan Bentley

 

 

 

 

Thanks for the photos

http://www.thew2o.net/events/humanhealth/observer3.htm

Methane Emission Concerns for Compostable Plastics Not Biodegradable

Research and articles about biodegradable plastics releasing methane too quickly in landfills have been taking over the internet this past June. An alarming title to draw readers in, splashed on a article/blog written with bits of information that have trickled down from a once reliable source. Is biodegradable really harmful??

The original research was performed using “compostable plastics” designed to break down in as fast as 180 days!  ENSO Plastics are not “compostable plastics”.

ENSO is a global company and recognizes that some people aren’t as far ahead in methane-friendly landfill technology as North America (Environmental Protection Agency’s Landfill Methane Program at http://www.epa.gov/lmop ).  The fact is that even banana peels and apple cores release methane in a landfill as a natural byproduct of biodegradation.

Common sense says that truly “Earth Friendly Plastics” are not in a race to biodegrade as quickly as possible for many reasons.  ENSO Plastics are engineered to biodegrade in a controlled manner; between 5 and 15 years in real-world landfill conditions.  This strikes a wonderful balance between a manageable release of naturally occurring biogases and the timely breakdown of plastic waste in a landfill.  Just another example as to why ENSO is the answer to today’s plastic problem.

 

Are methane emissions good or bad?

Research and articles about biodegradable plastics releasing methane too quickly in landfills have been taking over the internet this past June. An alarming title to draw readers in, splashed on a article/blog written with bits of information that have trickled down from a once reliable source, leaving readers with the question in mind….Is “biodegradable” plastic  really harmful?

The original research was performed using “compostable plastics” designed to break down in as fast as 180 days!  ENSO Plastics are not “compostable plastics”.

ENSO is a global company and recognizes that some people aren’t as far ahead in methane-friendly landfill technology as North America (Environmental Protection Agency’s Landfill Methane Program at http://www.epa.gov/lmop ).  The fact is that even banana peels and apple cores release methane in a landfill as a natural byproduct of biodegradation.

Common sense says that truly Earth Friendly Plastics” are not in a race to biodegrade as quickly as possible for many reasons.  ENSO Plastics are engineered to biodegrade in a controlled manner; between 5 and 15 years in real-world landfill conditions.  This strikes a wonderful balance between a manageable release of naturally occurring biogases and the timely breakdown of plastic waste in a landfill.  Just another example as to why ENSO is the answer to today’s plastic problem.

 

PLA Corn Utensils, I am whatever I say I am..Or Not?

So what exactly is PLA?

PLA also known as  Polylactic acid or polylactide (PLA) which is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch in the United States, tapioca products (roots, chips or starch mostly in Asia) or sugarcanes (in the rest of world).

In the U.S  a majority of PLA is made with genetically modified corn (Nature Works is the largest provider of genetically modified cornstarch in the world.) According to Elizabeth Royte, in Smithsonian, “PLA may well break down into its constituent parts (carbon dioxide and water) within 3 months in a controlled composting environment, that is, an industrial composting facility heated to 140 degrees Fahrenheit and fed a steady diet of digestive microbes. But it will take far longer in a compost bin, or in a landfill packed so tightly that no light and little oxygen are available to assist in the process. Indeed, analysts estimate that a PLA bottle could take anywhere from 100 to 1,000 years to decompose in a landfill.”

Let’s get one thing straight PLA is not compostable in home compost, go ahead and try…you will be waiting a very long time and it still might not happen. PLA is ASTM 6400 which means a product can be considered compostable if a product has undergone 60% biodegradation within 180 days; the standard is 15-18 weeks at a majority of industrial compost facilities. So these industrial compost facilities, where are they? According to this site in the United States there are 422 composting facilities registered, what each facility is capable of composting I am unsure, you would have to contact the particular facility you are interested in.

industrial compost

So if you buy PLA products, such as PLA single use eating utensils and you do not have access to an industrial compost or you just think it will be okay to throw the fork, spoon or knife in the garbage because it seems natural enough, unfortunately it is not. That fork, spoon, or knife could take hundreds of years to decompose. If you do not plan to send your single use PLA purchases to an industrial compost, I do not see how it would be a rational investment. Not only because PLA utensils will sit in a landfill forever but because they are not very durable, they bend and break very easily and can become droopy if placed in heat. So if you’re not planning on disposing  of PLA properly what have you accomplished?  If you are one of those people who does not have access to an industrial compost or really just do not have time to think about it and prefer quality products, try purchasing biodegradable & recyclable plastic products , for example ENSO plastics.

Check out my video!

 

If you like this blog and my vlog don’t forget to comment and Subscribe to my YouTube channel! I always have weekly updates!!

 

Thanks to these links for info

http://en.wikipedia.org/wiki/Polylactic_acid

http://environment.about.com/od/greenlivingdesign/a/pla.htm

http://www.greenworld365.com/what-are-corn-starch-biocompostables-aka-pla-plastics/

Bio degradable Vs. Recycling

capitoll hill enso plastics

 

 

Capitol Hill


I recently had the pleasure of going back east to DC involving meetings on Capitol Hill where the discussion of biodegradable materials in the recycling stream was the main focus. After the representative from a recycling organization gave his presentation, I then gave mine. We were perceived to be in opposite corners, so we were asked to speak in the same meetings so as to address any clarifying questions that might have come up after our presentations. It dawned on me that this perception brought on by the recycling organizations (APR and NAPCOR) are in actuality NOT TRUE!


Truth


ENSO and the recycling community are very much in alignment with the goal of saving our natural resources as long as possible. When ENSO embarked on the overwhelming mission to eliminate plastic pollution from our planet, we had recyclers and their processes as the #1 consideration-everything we came up with had to pass the scrutiny of the question, “does this material have any adverse effect on the recycling stream.” Many years and engineering feats later, we did it!!! We have had dozens of recyclers (or reprocessors) test and actually run the ENSO material through their process to see if there are any issues with the ENSO plastic. With no exception, 100% of them have indicated that they would never know it was an ENSO bottle if we have not told them. Scientifically, that has to be true because our mix does not even chemically bond with the plastic it is being mixed with.


Recycling & Pollution


ENSO and the recycling community are very much in alignment, so much that we feel we are at stake with their success -the recyclers are in a tough market currently, as it seems they are being diminished on every turn. They are not allowed to participate in decisions regarding innovations to help the environment, but rather are left to deal with the new materials as they show up in their processing. Some of the reprocessors are worried about staying in business because of the issues arising from trying to sort out extremely incompatible materials like PLA (corn based plastic) from their PET bottle stream. They have indicated to us that they literally cheered because an environmental plastic was made that did not affect their bottom line by contaminating their recyclate material. Daily, companies using plastic are getting increased pressure to “stop polluting the environment”. For instance, almost daily I see news about plastic bags being banned around the world. And although the blame should not rest solely on manufacturing, something HAS to be done. We need to demand a new attitude towards the use of plastic. ENSO is a real and tangible solution to not only keep recycling intact, but also do much, much more. Globally, the human race is only recycling 5% of all plastics…think about that for a minute. Since when did you ever accept a 5% success rate as a viable solution under any circumstance? Could you imagine an oil spill clean-up effort saying, “Welp, we’ve cleaned up 5% of the spill, the rest well act as if there is no issue.” Yet it is happening right before our eyes when it comes to addressing the end of life issue of plastics. Why not make plastics biodegradable so when they are thrown into a landfill, they can contribute to the growing practice of creating clean energy from landfill natural gas? Renewable, green, clean, smart…intelligent -all describe this value proposition! Companies using it, and handling it will also add the description, “profitable” –but that’s their little secret.

 

ENSO

 

Our message is clear, “recycle ENSO plastic wherever, and whenever you can. But if you fail, (and there is a 95% chance of that happening), know that you are still in harmony with our planet because this plastic will biodegrade naturally utilizing the earths microorganisms (microbes).” The environmental issues surrounding plastic use are rising, not decreasing. People that recycle, will always recycle-they will not change their values to all of a sudden become “litter bugs”, because something is recyclable and biodegradable. A national poll done on our behalf supports this, and also says that 61% of America believes it is more important to have plastic biodegradable than recyclable. Also, recycling will not rid the planet of plastic pollution, just delay the fact that inevitably everything plastic will end up in a landfill. ENSO says that we can have both, and if you are a consumer, you should demand both, and if you are a manufacture, you would do well offering both. What more can manufactures do? (They have already reduced our plastics down to where the next step for a bottle is a zip lock bag!) The answer? Companies and brands can get smart and innovative. Doing this now creates opportunity for growth in market share because they are seen as smart and innovative, and consumers like both to have that coveted loyalty. We can have recycling and ENSO’s solution to long term plastic pollution a complimentary package to bridge the battle between pro-environment vs. plastic use. My mom called that, “having your cake, and eating it too.” We each might be required to pay a penny or two extra per bottle for this added environmental value, but with the way things are going right now with all of the plastic building up on our lands and seas -“do the math” is another momism that is very appropriate. – Del Andrus

PLA I am whatever I say I am

So what exactly is PLA?

 


PLA also known as  Polylactic acid or polylactide (PLA) which is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch in the United States, tapioca products (roots, chips or starch mostly in Asia) or sugarcanes (in the rest of world).

In the U.S  a majority of PLA is made with genetically modified corn (Nature Works is the largest provider of genetically modified cornstarch in the world.) According to Elizabeth Royte, in Smithsonian, “PLA may well break down into its constituent parts (carbon dioxide and water) within 3 months in a controlled composting environment, that is, an industrial composting facility heated to 140 degrees Fahrenheit and fed a steady diet of digestive microbes. But it will take far longer in a compost bin, or in a landfill packed so tightly that no light and little oxygen are available to assist in the process. Indeed, analysts estimate that a PLA bottle could take anywhere from 100 to 1,000 years to decompose in a landfill.”

Let’s get one thing straight PLA is not compostable in home compost, go ahead and try…you will be waiting a very long time and it still might not happen. PLA is ASTM 6400 which means a product can be considered compostable if a product has undergone 60% biodegradation within 180 days; the standard is 15-18 weeks at a majority of industrial compost facilities. So these industrial compost facilities, where are they? According to this site in the United States there are 422 composting facilities registered, what each facility is capable of composting I am unsure, you would have to contact the particular facility you are interested in.

So if you buy PLA products, such as PLA single use eating utensils and you do not have access to an industrial compost or you just think it will be okay to throw the fork, spoon or knife in the garbage because it seems natural enough, unfortunately it is not. That fork, spoon, or knife could take hundreds of years to decompose. If you do not plan to send your single use PLA purchases to an industrial compost, I do not see how it would be a rational investment. Not only because PLA utensils will sit in a landfill forever but because they are not very durable, they bend and break very easily and can become droopy if placed in heat. So if you’re not planning on disposing  of PLA properly what have you accomplished?  If you are one of those people who does not have access to an industrial compost or really just do not have time to think about it and prefer quality products, try purchasing biodegradable & recyclable plastic products , for example ENSO plastics.

Check out my video!

 

 

 

 

If you like this blog and my vlog don’t forget to comment and Subscribe to my YouTube channel! I always have weekly updates!!

 

Thanks to these links for info

http://en.wikipedia.org/wiki/Polylactic_acid

http://environment.about.com/od/greenlivingdesign/a/pla.htm

http://www.greenworld365.com/what-are-corn-starch-biocompostables-aka-pla-plastics/

http://malcolmhally.com/large-multi-view/gallery/1436351–/Mixed%20Media/On%20Canvas/Non-representational.html

Pitt Researchers: Plant-Based Plastics Not Necessarily Greener Than Oil-Based Relatives

Biopolymers are the more eco-friendly material, but farming and energy-intense chemical processing means they are dirtier to produce than petroleum-derived plastics, according to study in Environmental Science & Technology

Contact: Morgan Kelly | mekelly@pitt.edu | 412-624-4356 | Cell: 412-897-1400

PITTSBURGH—An analysis of plant and petroleum-derived plastics by University of Pittsburgh researchers suggests that biopolymers are not necessarily better for the environment than their petroleum-based relatives, according to a report in Environmental Science & Technology. The Pitt team found that while biopolymers are the more eco-friendly material, traditional plastics can be less environmentally taxing to produce.

Biopolymers trumped the other plastics for biodegradability, low toxicity, and use of renewable resources. Nonetheless, the farming and chemical processing needed to produce them can devour energy and dump fertilizers and pesticides into the environment, wrote lead author Michaelangelo Tabone (ENG, A&S ’10), who conducted the analysis as an undergraduate student in the lab of Amy Landis, a professor of civil and environmental engineering in Pitt’s Swanson School of Engineering. Tabone and Landis worked with James Cregg, an undergraduate chemistry student in Pitt’s School of Arts and Sciences; and Eric Beckman, codirector of Pitt’s Mascaro Center for Sustainable Innovation and the George M. Bevier Professor of Chemical and Petroleum Engineering in Pitt’s Swanson School. The project was supported by the National Science Foundation.

The researchers examined 12 plastics—seven petroleum-based polymers, four biopolymers, and one hybrid. The team first performed a life-cycle assessment (LCA) on each polymer’s preproduction stage to gauge the environmental and health effects of the energy, raw materials, and chemicals used to create one ounce of plastic pellets. They then checked each plastic in its finished form against principles of green design, including biodegradability, energy efficiency, wastefulness, and toxicity.

Biopolymers were among the more prolific polluters on the path to production, the LCA revealed. The team attributed this to agricultural fertilizers and pesticides, extensive land use for farming, and the intense chemical processing needed to convert plants into plastic. All four biopolymers were the largest contributors to ozone depletion. The two tested forms of sugar-derived polymer—standard polylactic acid (PLA-G) and the type manufactured by Minnesota-based NatureWorks (PLA-NW), the most common sugar-based plastic in the United States—exhibited the maximum contribution to eutrophication, which occurs when overfertilized bodies of water can no longer support life. One type of the corn-based polyhydroyalkanoate, PHA-G, topped the acidification category. In addition, biopolymers exceeded most of the petroleum-based polymers for ecotoxicity and carcinogen emissions.


Once in use, however, biopolymers bested traditional polymers for ecofriendliness. For example, the sugar-based plastic from NatureWorks jumped from the sixth position under the LCA to become the material most in keeping with the standards of green design. On the other hand, the ubiquitous plastic polypropylene (PP)—widely used in packaging—was the cleanest polymer to produce, but sank to ninth place as a sustainable material.

Interestingly, the researchers found that the petroleum-plant hybrid biopolyethylene terephthalate, or B-PET, combines the ills of agriculture with the structural stubbornness of standard plastic to be harmful to produce (12th) and use (8th).

Landis is continuing the project by subjecting the polymers to a full LCA, which will also examine the materials’ environmental impact throughout their use and eventual disposal.

<table style="cursor: default; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; width: 600px; border: 0px dashed #bbbbbb;" border="0" cellspacing="0" cellpadding="0" align="center">
<tbody>
<tr>
<td style="width: 50px; text-align: center;"><strong>Polymer</strong></td>
<td style="width: 50px; text-align: center;"><strong>Material</strong></td>
<td style="width: 10px; text-align: center;">&nbsp;<strong>Green Design Rank</strong></td>
<td style="width: 10px; text-align: center;"><strong>LCA Rank</strong></td>
</tr>
<tr>
<td style="width: 50px;">Polylactic acid-NatureWorks (PLA-NW)</td>
<td style="width: 50px;">Sugar, cornstarch</td>
<td style="width: 10px; text-align: center;">1</td>
<td style="width: 10px; text-align: center;">6</td>
</tr>
<tr>
<td style="width: 50px;">Polyhydroxyalkanoate-Stover (PHA-S)</td>
<td style="width: 50px;">Corn stalks</td>
<td style="width: 10px; text-align: center;">2</td>
<td style="width: 10px; text-align: center;">4</td>
</tr>
<tr>
<td style="width: 50px;">Polyhydroxyalkanoate-General (PHA-G)</td>
<td style="width: 50px;">Corn kernels</td>
<td style="width: 10px; text-align: center;">2</td>
<td style="width: 10px; text-align: center;">8</td>
</tr>
<tr>
<td style="width: 50px;">Polylactic acid-General (PLA-G)</td>
<td style="width: 50px;">Sugar, cornstarch</td>
<td style="width: 10px; text-align: center;">4</td>
<td style="width: 10px; text-align: center;">9</td>
</tr>
<tr>
<td style="width: 50px;">High-density polyethylene (HDPE)</td>
<td style="width: 50px;">Petroleum</td>
<td style="width: 10px; text-align: center;">5</td>
<td style="width: 10px; text-align: center;">2</td>
</tr>
<tr>
<td style="width: 50px;">Polyethylene Terephthalate (PET)</td>
<td style="width: 50px;">Petroleum</td>
<td style="width: 10px; text-align: center;">6</td>
<td style="width: 10px; text-align: center;">10</td>
</tr>
<tr>
<td style="width: 50px;">Low-density polyethylene (LDPE)</td>
<td style="width: 50px;">Petroleum</td>
<td style="width: 10px; text-align: center;">7</td>
<td style="width: 10px; text-align: center;">3</td>
</tr>
<tr>
<td style="width: 50px;">Biopolyethylene terephthalate (B-PET)</td>
<td style="width: 50px;">Petroleum, plants</td>
<td style="width: 10px; text-align: center;">8</td>
<td style="width: 10px; text-align: center;">12</td>
</tr>
<tr>
<td style="width: 50px;">Polypropylene (PP)</td>
<td style="width: 50px;">Fossil fuels</td>
<td style="width: 10px; text-align: center;">9</td>
<td style="width: 10px; text-align: center;">1</td>
</tr>
<tr>
<td style="width: 50px;">General purpose polystyrene (GPPS)</td>
<td style="width: 50px;">Petroleum</td>
<td style="width: 10px; text-align: center;">10</td>
<td style="width: 10px; text-align: center;">5</td>
</tr>
<tr>
<td style="width: 50px;">Polyvinyl chloride (PVC)</td>
<td style="width: 50px;">Chlorine, petroleum</td>
<td style="width: 10px; text-align: center;">11</td>
<td style="width: 10px; text-align: center;">7</td>
</tr>
<tr>
<td style="width: 50px;">Polycarbonate (PC)</td>
<td style="width: 50px;">Petroleum</td>
<td style="width: 10px; text-align: center;">12</td>
<td style="width: 10px; text-align: center;">11<span style="color: #494949; font-family: Verdana, sans-serif; font-size: small;"><span style="font-size: 12px;"><span style="color: #000000; font-family: Verdana, Arial, Helvetica, sans-serif; font-size: x-small;"><span style="font-size: 10px;"><br /></span></span></span></span></td>
</tr>
</tbody>
</table>