The Great Pacific Garbage Patch and Ocean Plastic Pollution

Marine life can mistake pieces of plastic for food.

Imagine you’re sailing the waters between Hawaii and California. The sun is at your back, the wind is in your hair, and there’s a giant pool of plastic garbage larger than the state of Texas in front of you.

Meet the Great Pacific Garbage Patch — an enormous mess of plastic and other litter swirling around in a system of rotating ocean currents called the North Pacific Gyre. Not only is the Patch incredibly damaging to the environment, but it could also be permanent unless we reform plastic production around the globe.

See, the world produces around 300 billion pounds of plastic every year, and the Clean Air Council reports that Americans throw away 2.5 million plastic bottles every hour. Only a fraction of all this plastic is recycled, with the majority ending up in landfills. Sadly, some is also dumped illegally into our oceans by various civilian, military, cruise and merchant ships, and by other means.

The problem with traditional plastics in oceans is the same problem with traditional plastics in landfills — they could last there for hundreds or thousands of years. The sun, saltwater, currents and other elements aren’t enough to break down objects like PET plastic water bottles; the plastic will only disintegrate into smaller and smaller pieces that never fully decompose into biomass and bio-gases. Marine life can mistake these small pieces of plastic for food, eat them and become poisoned. And even if the plastic isn’t ingested, it still leaches toxic chemicals that, once released, are very harmful and impossible to collect and remove.

A traditional PET plastic bottle could last for hundreds or thousands of years in the ocean.

The Great Pacific Garbage Patch is 90 percent plastic, making it the ultimate example of the negative impact plastic has on our oceans. And it and other areas like it (yes, there are more) will continue to endanger plant and animal life unless manufacturers begin producing plastics that can biodegrade into safer components.

One thing that could prove crucial to this battle is the presence of oceanic microbes like bacteria and fungi. Bottle developer ENSO Bottles has designed a form of PET plastic with organic compounds in its molecular structure — nutrients that the microbes find irresistible. These microorganisms eat away at the plastic, breaking it down into non-harmful matter in a process that typically lasts between one and five years. A traditional PET plastic bottle, on the other hand, could potentially take hundreds or thousands of years.

Where our oceans are concerned, this new biodegradable PET plastic could mean the difference between a giant floating patch of plastic the size of Texas … and cleaner oceans for generations yet to come. Which version of the future will you choose to support?

For more information about the technology ENSO Bottles uses, visit ensobottles.com.

To learn more about the Great Pacific Garbage Patch and the effort to eradicate it, visit tedxgreatpacificgarbagepatch.com.