Category Archives: Environmental News

Debunking the Myths of the Paper vs. Plastic Debate, Part I

Image by Aeropause

Standing at the grocery store checkout, realizing you forgot your reusable shopping bags, or if you did remember them, you don’t have enough, you’re faced with the decision: paper or plastic? First, you’re momentarily overcome with pangs of guilt; second, the inner dialogue commences. You’re a deer in the headlights, frozen, afraid to make a move.

There’s a lot of confusion surrounding the Great Bag Debate, much of it perpetuated by misinformation, common assumptions, and a whole lot of greenwashing. For years, it was thought that the better choice for the environment was paper, but it turns out that paper and plastic bags are just about equal in pros and cons. They both use resources, cause pollution, and generate many tons of waste that more often than not, ends up in the landfill.

To further complicate the conundrum, there is more than just paper and plastic to consider these days; plastic alternatives, including corn-based PLA, and landfill biodegradable plastics are commonly being used in packaging. As eco-conscious consumers, which bag do we choose, and how can feel good about our choice?

The Resources and Energy Pitfall

Myth #1: Paper is made from a renewable resource, so it must have a lower impact.

The first part of this statement is true, but in fact, paper production deals a double blow when it comes to climate change and environmental impact. First, forests are cut down, removing trees that absorb greenhouse gases and convert it into oxygen (not to mention the other impacts on wildlife and ecosystems in general); in 1999, more than 14 million trees were cut down to produce the 10 billion paper bags consumed in the U.S. alone. Second, manufacturing paper from pulp takes a tremendous amount of energy, and because paper is relatively heavy, it takes a lot of fuel to transport the finished product.

How does this compare with the plastics? Of course, there are impacts associated with the extraction of petroleum (just look at the Gulf), but it turns out that the actual production of plastic bags releases about 92% fewer emissions into the atmosphere than paper bag production, and requires about Plastic bags also weigh significantly less than paper, requiring less fuel to get them from point A to point B.

What About Waste


Myth #2: Paper breaks down in the landfill faster than plastic, so it must be the better choice.

Image by greenismyfavoritecolor.net

It turns out that under standard landfill conditions, paper does not degrade any faster than plastic. Even newspaper can take years to break down; newspapers excavated from one New York landfill were mostly intact after 50 years, and another in Arizona was still readable after 35 years. Indeed, the largest percentage of solid waste in U.S. landfills comes from paper and paperboard products, about 31%.

On the other hand, the new generation of plastics somewhat complicate this debate. PLA, or corn-based, plastics commonly used in disposable cutlery, packaging, and plastic grocery bags is compostable, but only among the perfect conditions found in a commercial composting facility, NOT in the landfill where  most plastic ends up, or even in the backyard compost pile.

Biodegradable plastics, like ENSO’s products, however, do break down in the anaerobic landfill environment in a short amount of time (an average of five years), leaving behind only methane, carbon dioxide, and biomass. The use of an additive in standard plastic production also makes it a cost-effective solution. In terms of the plastic waste problem, the biodegradables currently hold the most promise.

Next week, in Part II, we’ll take a look at the aspects of pollution and recycling, and see how the contenders hold up.

The Great Pacific Garbage Patch and Ocean Plastic Pollution

Marine life can mistake pieces of plastic for food.

Imagine you’re sailing the waters between Hawaii and California. The sun is at your back, the wind is in your hair, and there’s a giant pool of plastic garbage larger than the state of Texas in front of you.

Meet the Great Pacific Garbage Patch — an enormous mess of plastic and other litter swirling around in a system of rotating ocean currents called the North Pacific Gyre. Not only is the Patch incredibly damaging to the environment, but it could also be permanent unless we reform plastic production around the globe.

See, the world produces around 300 billion pounds of plastic every year, and the Clean Air Council reports that Americans throw away 2.5 million plastic bottles every hour. Only a fraction of all this plastic is recycled, with the majority ending up in landfills. Sadly, some is also dumped illegally into our oceans by various civilian, military, cruise and merchant ships, and by other means.

The problem with traditional plastics in oceans is the same problem with traditional plastics in landfills — they could last there for hundreds or thousands of years. The sun, saltwater, currents and other elements aren’t enough to break down objects like PET plastic water bottles; the plastic will only disintegrate into smaller and smaller pieces that never fully decompose into biomass and bio-gases. Marine life can mistake these small pieces of plastic for food, eat them and become poisoned. And even if the plastic isn’t ingested, it still leaches toxic chemicals that, once released, are very harmful and impossible to collect and remove.

A traditional PET plastic bottle could last for hundreds or thousands of years in the ocean.

The Great Pacific Garbage Patch is 90 percent plastic, making it the ultimate example of the negative impact plastic has on our oceans. And it and other areas like it (yes, there are more) will continue to endanger plant and animal life unless manufacturers begin producing plastics that can biodegrade into safer components.

One thing that could prove crucial to this battle is the presence of oceanic microbes like bacteria and fungi. Bottle developer ENSO Bottles has designed a form of PET plastic with organic compounds in its molecular structure — nutrients that the microbes find irresistible. These microorganisms eat away at the plastic, breaking it down into non-harmful matter in a process that typically lasts between one and five years. A traditional PET plastic bottle, on the other hand, could potentially take hundreds or thousands of years.

Where our oceans are concerned, this new biodegradable PET plastic could mean the difference between a giant floating patch of plastic the size of Texas … and cleaner oceans for generations yet to come. Which version of the future will you choose to support?

For more information about the technology ENSO Bottles uses, visit ensobottles.com.

To learn more about the Great Pacific Garbage Patch and the effort to eradicate it, visit tedxgreatpacificgarbagepatch.com.