Tag Archives: landfill energy

A Look at the Largest Landfill Gas-To-Energy Project in Georgia

The three new plants, combined with Republic’s Hickory Ridge landfill operation, establish Republic and Mas Energy’s landfill gas-to-energy portfolio as the largest in Georgia.

Republic Services Inc. recently unveiled a new renewable energy project with partner Mas Energy LLC that will serve the Metro Atlanta area, generating 24.1 megawatts of electricity, or enough renewable energy to power 15,665 households.

“The energy will be supplied to Georgia Power for distribution throughout the local electric grid. In all likelihood, Georgia Power’s retail electric customers in Metro Atlanta will utilize the energy,” says Michael Hall, principal and chief development officer for Mas Energy based in Ponte Vedra Beach, Fla.

Their agreement, which also includes partners Georgia Power, I Squared Capital, Crowder Construction Company and Nixon Energy, is for 20 years and will convert methane captured from three local landfills at gas-to-energy facilities in the cities of Buford, Griffin and Winder. Those landfills combined have an approximate daily volume of 7,000 tons.

The three plants, combined with Republic’s Hickory Ridge landfill operation, establish Republic and Mas Energy’s landfill gas-to-energy portfolio as the largest in Georgia,” says Michael Meuse, general manager for Republic Services in Atlanta, Ga.

Landfill gas-to-energy projects like these involve capturing methane, a byproduct of the normal decomposition of waste, from the subsurface and routing the methane to a series of engines. These engines convert the methane into electricity, which can be distributed to the local power grid.

“Methane is a greenhouse gas that is naturally produced as organic waste breaks down anaerobically in landfills,” says Meuse. “Methane gas is recovered by the gas collection systems. Gas wells are driven into the waste mass and powerful blowers are used to create a vacuum to draw out and pipe the gas to the energy plant.”

The system then converts the methane gas into a clean-burning fuel.

“The power generation facility utilizes internal combustion engines fueled by the collected and treated landfill gas to produce electricity, which is then delivered to Georgia Power’s transmission and distribution system,” says Hall.

The partnership was fueled by Georgia embracing renewable and clean energy projects within state lines.

“In 2006, Georgia’s Public Service Commission established the ‘QF Proxy Unit Methodology’, whereby qualifying facilities in the state of Georgia were eligible to enter into power purchase agreements (PPA) with Georgia Power that recognized the full value of renewable and clean energy to Georgia consumers,” says Hall. “Mas Energy secured its PPA in early 2014 and brought Republic Services a proposal to build plants at Republic’s Atlanta sites.”

Republic and Mas Energy had previously collaborated on a project at Republic’s now-closed Hickory Ridge landfill site.

“Based on that positive experience, the agreements were made between Mas Energy and Republic Services to develop the (recently announced) projects,” says Hall.

Meuse says that according to the U.S. Environmental Protection Agency (EPA) calculations, energy produced from landfill gas-to-energy facilities will offset the equivalent of: carbon dioxide (CO2) emissions from 127,795,779 gallons of gasoline; carbon sequestered by 930,919 acres of U.S. forests; and carbon dioxide (CO2) emissions from 6,090 railcars’ worth of coal burned.

“Projects such as these reduce reliance on non-renewable resources (coal and natural gas), reduce methane emissions from the site, and eliminate emissions from flares previously used for gas destruction,” he says.

Read original article in Waste 360 written by Megan Greenwalt @ http://beta.waste360.com/gas-energy/look-largest-landfill-gas-energy-project-georgia?utm_test=redirect&utm_referrer=

When Should You Not Recycle?

By Robert Coolman

Reduce, reuse, recycle—but for environmentalists, that’s not always a good idea.

When is it right to recycle? If your answer is “always,” I plead with you to re-evaluate your priorities as an environmentalist. We certainly have an obligation to use Earth’s resources and manage waste responsibly, but I believe the priorities and practices of modern environmentalism are in serious need of introspection.

Films like “Wall-E” and “Idiocracy” would have you believe that we are only years away from skyscrapers of garbage on the outskirts of our cities, but the truth is landfill capacity isn’t a problem in the foreseeable future. According to a letter in Nature Climate Change, U.S. landfills have an average of 34 years of capacity remaining, though capacity is growing at a rate of 2.7 years annually. Also, it’s not as if that land is unusable once it’s filled. Much of NYC is built on top of garbage, and so are many parks. Local governments are typically upfront about what places were formerly landfills (here’s mine) and continually monitor methane gas and liquid leachate levels, concerns that modern landfills are specifically engineered to manage.

To say that landfill space isn’t a problem in the foreseeable future isn’t to say we shouldn’t think about it at all. Rather, there are concerns that will cause much larger problems much, much sooner. Because we are already seeing the effects of climate change due to the increase in greenhouse gases, the right time to recycle is when it reduces greenhouse gas emissions. If landfills can be used to reduce greenhouse gas emissions, we should absolutely use them.

Recycling the hard-to-find elements put in many electronics is a no-brainer. Energy, pollution, and money are also all saved when comparing the reprocessing of post-consumer metal scrap against mining and processing ore. As for other stuff? With one major exception, it should all be landfilled.

A common criticism of landfills is how long it takes materials to break down. Ironically, this is backwards; it’s the materials that break down fastest that we should be most concerned about. When organic materials like food, yard waste, and biodegradable plastics break down in a landfill, they anaerobically decompose to produce methane. This is a problem because methane is more than 20 times potent as a greenhouse gas than carbon dioxide, which is what organic matter turns into when it composes aerobically in a composter.

There’s two ways to solve this methane problem. First is to capture the methane produced from a landfill and burn it. This turns the methane into carbon dioxide and can generate electricity. While this is the traditional method, it only works after a landfill has been capped. According to Waste Consultant and Yale Student Jon Powell, “91 percent of all landfill methane emissions are due to landfills that are still open.” Additionally, the infrastructure to produce electricity from combusting methane is subject to a cost/benefit analysis of how much methane is produced and for how long.

The alternative is to separate out organic matter from other landfilled solids, then intentionally turn it into methane which can be turned into electricity at an even greater return. Because the carbon contained in biomass (and by extension the carbon in the gases that evolve from it) was brought out of the atmosphere by plants performing photosynthesis on atmospheric carbon dioxide, returning bio-based carbon to the atmosphere (specifically in the form of carbon dioxide) does not contribute to the total amount of atmospheric carbon, and thus does not contribute to climate change.

So now we’re up to four bins: electronics, metal, biodegradable stuff (including most paper), and everything else. The “everything else” bin goes directly to the landfill, and includes both plastic and glass. Recycling glass is so close to a borderline energy improvement that it probably doesn’t deserve its own bin. As for plastic, anything that’s not code 1 (rPET) can’t be recycled to make containers and is instead demoted to plastic lumber, etc. When it’s done being that, it’s almost certainly going to the landfill anyway.

Why not incinerate used plastics to produce energy? The atoms in plastic come from petroleum, so burning plastic still counts as a fossil fuel and creates a net increase greenhouse gases. In a landfill, the carbon in plastic is said to be “sequestered” which is the end goal of taking carbon out of the air and storing it so it won’t reach the atmosphere. Methods of sequestering atmospheric carbon are still under development and inherently take lots of energy; more energy than we got from burning the plastic in the first place. Instead of (1) burning plastic (2) taking the released carbon out of the air at great energy cost and (3) sequestering it, it’s probably best just to leave it sitting in a landfill.

Read original post here: http://www.thedailybeast.com/articles/2015/10/24/reduce-reuse-recycle-but-not-always.html

This was a great article and shows that the author has a pretty good understanding of the realities of recycling. In my time I have run across a handful of people that are misguided in their belief that we should recycle everything. When you hear someone say this you can rest assured that the person making that statement lacks the understanding and knowledge about the realities of recycling. And unfortunately, many people mistakenly quote countries out of the EU as recycling rates as high as 80%. Many of these countries include incineration in their recycling numbers.

Unfortunately those that may think we should recycle everything throw out inaccurate and misleading recycling rates out into the public domain to get others to believe the same misguided and environmentally and economically detrimental approach to our waste. In the meantime, there are companies like ENSO Plastics who understand the realities of our waste infrastructures and is working diligently to develop solutions that will make the most environmental impact today.

Click here to download a free white paper on how to develop sustainability strategies of reaching zero waste; http://www.ensoplastics.com/download/Plastics_EstablishingthePathtoZeroWaste.pdf