Category Archives: Environmental News

Biodegradable Plastic – Compostable Not So Fast Says Stanford Daily

There was a recent press release issued by Media Juice titled “Biodegradable Plastic – Compostable Not So Fast Says Stanford Daily.”  The press release reviews a study performed by students at Stanford University regarding compostable utensils and their performance in “real world” environments.

The study points out that what the company markets as a compostable PLA material and the “Compostable” certifications that organizations (such as BPI Biodegradable Products Institute) issue on the material is not necessary a reflection of what happens in real world environments.

This brings up a great point and discussion topic and one ENSO has pushed for the past five years and that is that we are mistaken in our approach to promoting, marketing or pushing materials that will go away in any real world environment in a specific timeframe.    Even the much touted and pushed material of PLA is not a rapidly compostable as is promoted in marketing materials.  Sure, we can create test environments which are highly controlled and manipulated that will maximize biodegradation and provide results that look and sound great, but the variety that nature brings in the real world can mean a huge difference in the amount of time needed for a product to biodegrade, from months to even years. This does not change the fact of whether a product is biodegradable, just simply that to dictate exactly when it will biodegrade is a bit misleading to the consumer.

So yes – labs can show specific time frames for biodegradation, but what happens when that same material ends up in real world environments?  9 times out of 10, it doesn’t perform as promised.  So, what does this mean?  How can a material tested and certified by industry organizations such as BPI not perform when introduced into real world natural environments?  After all legislators are passing laws based on such certifications.

We would love to hear your thoughts on the subject.

http://www.sbwire.com/press-releases/biodegradable-plastic-compostable-not-so-fast-says-stanford-daily-225526.htm

http://forkprintproject.wordpress.com/

http://www.news.pitt.edu/news/Landis_polymers_LCA

http://new.ensoplastics.com/theblog/?p=1143

 

Plastic Bag Bans

Bag Bans – Is That Really The Big Issue?

I recently read a short, but insightful, article surrounding the issues of bag bans.  The bag industry claims that banning bags will result in job loss, negative effects to local economies, hidden taxes, and lower environmental impact compared to paper, etc.  These are important issues to consider, but they really don’t address the real issue of lightweight plastic bags – litter.  The crux of the bag bans are associated with littering of bags whether intentional or not.  I think we have all seen these bags floating in the streets, in bushes and trees, and worse, marine environments. The bag littler looks ugly and in worse case scenarios it kills wildlife!

I think the real issue with bag bans is that we are not identifying the main problem, litter.

Yes, it is true that plastic bags are more environmentally friendly when comparing the carbon footprint, but in the whole scheme of things, should we really be pushing lightweight plastic bags over alternative bag solutions like reusable bags or heavy gauge plastics bags?  When is the last time you’ve seen a cotton reusable bag hanging in a tree?  You don’t!  They are much too heavy and they would end up going to the landfill, just like most of the other plastic packaging that comes with products we purchase.

Who is to blame for this problem? Can we change human behavior?  What can be done to improve processes so that bags are not the problem?  If there was a value to bags, like aluminum cans, would this result in a different outcome?  A recent study titled: “Plastic Film and Bag Recycling Collection: National Reach Study” found that over 91% of U.S. residents have access to bag recycling facilities, but consumers are not utilizing them.  Is bag recycling just too inconvenient?  Not profitable enough for the recyclers?   These are all questions we have asked to try to solve this problem, but perhaps there is a bigger question that we should be asking ourselves:  Are there applications that we should not utilize plastic in?

If we zoom out of the minutia and look at the overall problem, human behavior is at the cause of all of these issues.  But, maybe we can’t change human behavior. Maybe there are some plastic applications, such as bags, that we as humans should say, “let’s just get rid of them, because we aren’t able to solve the problem -other than to ban them”?

This blog is not going to solve the problem or answer the question “to ban or not to ban”, but to bring up the questions that we should be asking ourselves. Maybe we should be ok with banning certain applications of plastics, if they are resulting in damage to our environment.  But, that doesn’t mean that we need to get rid of all plastics!  After all, plastics do have a lower carbon footprint than the alternatives -and it is the material that 25 years ago the environmentalists wanted choose instead of paper.  Who knows the absolute right answer?  If we do now walk away from plastic bags, it would not be the first time our US society has come full circle in their overall opinion…

See what people are saying about plastic bag bans.

 

Clean Energy

Methane Gasses: Least Expensive Form of Clean Energy?

Did you know that using the methane gasses generated from landfill sites are the least expensive form of clean energy we currently have available to us?  It’s true, our waste when biodegraded anaerobically produce methane which is a flammable gas.  Landfills are packed very tight and therefore do not allow oxygen to be used in the biodegradation process.  This results in anaerobic microbes having an environment which allows them to thrive and break down the organic matter within the landfill cell.  This also happens in Anaerobic Digesters where the by-product of the anaerobic biodegradation process produces the biogas Methane (CH4).

It is true that Methane gas is a potent greenhouse gas.  It is also flammable and dangerous and as such it needs to be collected and converted into gases that are less impacting on the environment and/or to create clean energy.  In the past many landfills would flare, or burn the methane to convert it to CO2 but over the years more and more landfills and businesses are recognizing that methane from landfills and anaerobic digestion can be used to create clean energy.

We are a long way from being a zero waste society and until we are we will have to deal with our waste.  That waste if placed into anaerobic environments can generate methane which has a value that can offset our need for other fossil fuels.

Due to the stringent level of regulations the United States has the highest percentage of landfills with LFG (Landfill Gas) collection systems relative to any other country practicing landfilling.  Nearly 60% of the worldwide capture of methane occurs in the U.S. even though the U.S. only generates 24% of the worldwide methane.  From the perspective of the largest sources of methane emissions, landfills are the third largest.  I provide these numbers to show that globally collecting and converting methane from landfills can provide the incentive to lower GHG (Greenhouse Gas) emissions.   It should be noted that progress in lowering GHG emissions is best achieved by a concerted, integrated approach that employs all available technologies and methods, including reuse, recycling, composting, waste-to-energy, and landfilling with capture of LFG.

So here’s the question:  What if all plastics were both recyclable and biodegradable, and would biodegrade in landfill environments?

If we do the math on the 31 billion plastic water bottles sent to a landfill instead of were recycled in 2006.  It would result in enough energy to power a 100w light bulb for over 900,000 hours.

To calculate how much energy can be created from a plastic bottle enhanced with the ENSO additive take the weight of the bottle multiply it by % carbon, multiply by 1.33 (molecular weight of CH4 16 / molecular weight of carbon 12 – this converts the carbon to methane), then multiply by 22.4 (L/g – ideal gas law).

(bottle wt * bottle carbon %) * (methane mass 16 / carbon mass 12) * 22.4 L/g = vol. methane per bottle

(19.2 gram * 62.5%) * (1.33) * 22.4 = vol. of methane per bottle

(12) * (1.33) * 22.4 = 357.50 L * (1 m3/100 L) = .3575 m3

Once we know the volume of methane per bottle we need to convert that into how much energy can be created per volume of methane. The Thermal energy content of methane is approximately 26.73 – 32.7 kj/m3 therefore about (26.73 + 32.7) / 2 = 29.715 kJ/m3

.3575 m3 * 29.715 kJ/m3 = 10.623 kJ

1kJ/second = 1kW and considering a 100W light bulb:

10.623 kJ = 10.623 kW seconds * (1000 W/1 kW) * (1 hr/3600 s) = 2.95 W hr

To light a 100W light bulb for 1 hour would require 33.88 bottles:

100 W * (1/2.95 W hr) = 33.88

31 billion bottles = 31,000,000,000 bottles * (1 hr/33.88 bottles) = 914,759 hrs

Bacteria Strain

Bacteria Strain that Biodegrades Polyethylene

Most people understand standard plastics to be resistant to the biodegradation process, but did you know that research from back in 2005 isolated a microbial strain called Brevibacillus borstelensis that is capable of utilizing polyethylene as the sole carbon and energy source?

So what does all that mean and how did they do this?

Soil taken from a polyolefin waste disposal site was used to isolate the bacteria strain that had adapted to its environment and energy source to be able to secrete the enzymes needed to utilize the carbon within the polyethylene chemical chain.  From the research there were a few BIG discoveries with one being that Brevibacillus borstelensis was able to use the carbon found in polyethylene as the sole source of energy.  This is important because we typically find that microbes will develop where there are easily accessible sources of energy.  This is the reason traditional plastics take so long to biodegrade, the carbon is too difficult to utilize by microbes resulting in plastics lasting for hundreds of years in the environment.  We now know of a microbe that is indifferent in using the carbon from polyethylene plastic or from other sources.

This research has opened the door to better understanding the adaptive nature of those microscopic creatures we share the planet with.  Although we can’t see them, they outnumber the human inhabitants by a factor of many trillions of them to each one of us.  They have also had millions of years more time on the earth than us humans have, and are instrumental in the cleaning process of creating a healthy viable planet.  There is a lot we can and will continue to learn about the tiniest creatures we call microbes.

To read the full paper: Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2005.02553.x/full

Compostable Products Go Straight To Landfill

In Marin, Many Compostable Materials Go Straight to Landfill

Despite proliferation of biodegradable foodware, those products aren’t being composted at the two waste management facilities in Marin. As a result, people’s choices might not be as eco-friendly as they think.

Greenwood School 8th grader Leyla Spositto and her classmates knew something was amiss just a few weeks into the school year when they saw the trash piling up.

Greenwood administrators had chosen San Ramon, Calif.-based Choicelunch as the school’s new lunch provider largely because nearly all of its packaging was made of compostable materials – from corn-based bio-plastic cups to potato-based “spudware” forks and spoons – and therefore would be diverted from the landfill. The move fit with one of the school’s core values of environmental stewardship.

But when Greenwood environmental science teacher Julie Hanft told the students that so-called bio-plastics weren’t being composted in Marin, Greenwood’s 7th and 8th graders, who handle the school’s trash as part of their after-school chores, were stunned.

“All of the stuff from Choicelunch was going to the trash,” Spositto said. “We were very surprised that a system didn’t exist for the packaging to be composted like it was supposed to be.”

So was Greenwood School Director Debra Lambrecht.

“We were very, very surprised,” Lambrecht said. “And the fact that the children were shocked and appalled? We thought, ‘Well right on.’”

With lots of packaging that could neither be composted nor recycled – bio-plastics can’t be recycled like regular plastic – the students and Hanft arranged to have a large collection of their Choicelunch packaging taken to Recology near Candlestick Park in San Francisco, where bio-plastics are composted. But they quickly realized that having a parent or teacher drive a truck across the Golden Gate Bridge weekly wasn’t exactly a sustainable solution.

Greenwood’s students and school administrators found themselves at the crossroads of an issue that all involved say is riddled with complexities. As a result, many Marin residents who think they’re making eco-friendly decisions – buying only compostable plastic cups for their children’s birthday party, for example – are sending more garbage to the landfill than if they were using recyclable materials.

“That’s the big shame about bio-plastics – people think they’re doing the right thing,” said Jessica Jones, the district manager for Redwood Landfill and Recycling Center in Novato, where most of the trash, recycling and compost from northern and southern Marin is taken.

Jones said Redwood, a subsidiary of Waste Management Inc., doesn’t compost bio-plastics because the compost the company produces is sold to and used on organic farms. If its compost contained any materials that took longer to biodegrade – like corn-based foodware or bio bags, for instance – it could not be certified by the Organic Materials Review Institute, the Eugene, Ore., which provides independent review of products to be used in organic farming.

Jim Iavarone, managing director at Mill Valley Refuse, which sends all of its waste to Redwood, said the inability to compost bio-plastics “has been a continual issue for us” ever since the company rolled out compost service in August 2010.

“The makers of these products and food services (like ChoiceLunch) have hung their hat on that,” Iavarone said. “It’s a good idea that just isn’t delivering as hoped or as advertised.”

Devi Peri, the education coordinator for Marin Sanitary Service, which serves most of Central Marin, including San Rafael, Larspur, Corte Madera, San Anselmo, Fairfax and the Ross Valley and Las Gallinas sanitary districts, says her company is in the same boat as Redwood.

“Not all compostable plastics are created equal and we don’t even have any way to see if it’s a true biodegradable plastic,” she said.

But compostable bio-plastics are accepted by other Bay Area waste companies like Recology, which processes most of its OMRI-certified compost at Jepson Prairie Organics, a facility in Vacaville.

“There is a clear disconnect between how Recology can compost bio-plastics and how we can’t,” Jones said.

The difference, according to OMRO Program Director Lindsay Fernandez-Salvador, is that Recology has an extensive “foreign removal program.” That program, essentially a filtering system, calls for manual removal of any all bio-plastic products not clearly labeled compostable. Under California law, products labeled compostable must meet the Biodegradable Products Institute’s ASTM D6400 standards, which “determine if plastics and products made from plastics will compost satisfactorily, including biodegrading at a rate comparable to known compostable materials.”

“Any compost may become contaminated with compostable plastics, but if the program has a reasonably robust foreign removal program, that satisfies OMRI’s requirements,” Fernandez-Salvador said.

A foreign removal program means that bio-plastics that aren’t labeled clearly or don’t meet the standards either end up in a separate compost stream of only products that will degrade at a slower rate than food scraps or yard waste – or they’re tossed into the landfill.

Peri said there is some industry skepticism about how much bio-plastic material is actually ending up in the compost streams at places like Recology.

“I have a feeling that it might be more (going to the landfill) than people might want to hear,” Peri said. “And maybe more than they are reporting.”

Jack Macy, the Zero Waste Coordinator for the city of San Francisco, acknowledged that some “compostable stuff that is not labeled well ends up in the landfill.”

“But the reason that we accept compostable bags and compostable foodware is that it allows us to capture more of the organics that we’re trying to divert from the landfill,” Macy added. “Every composter would prefer not to take that stuff because of the challenges of identification and the breaking down aspect. It’s easier to say no.”

That’s the choice Redwood has made, which spurred Greenwood’s 7th and 8th graders to take on the issue as a community action project. The students researched other options, spoke with potential vendors and made a presentation to Lambrecht right before the holiday break. The school intends to move to a completely independent lunch system next year, with an in-house chef making lunches dispensed with reusable plates and utensils. The move is one that only schools as small as Greenwood, with just 127 students, can afford to make.

In the meantime, Greenwood administrators have decided to dump Choicelunch and explore alternative options for the rest of this year.

“It is very disappointing,” said Karen Heller, the director of business development for Choicelunch, whose company supplies lunches for more than a dozen schools in Marin, including the Mill Valley and Ross Valley school districts. “But it hinges on the waste management company. Our hands are kind of tied.”

For two days a week, the school’s 8th graders will be selling lunch from Grilly’s and Tamalpie Pizzeria (one day apiece) to raise money for their 10-day spring trip. Lambrecht hopes to have a new deal in place in the coming days for the other days.

“We’ve really felt like we’ve accomplished something,” Spositto said of the student’s campaign. “We’re glad we had the authority to make this happen.”

Secrets of the Amazon – A solution for the Pacific Garbage Patch?

For decades we have known that the Amazon is home to more species than almost anywhere else on Earth. Amazon Rainforest constitutes the world’s largest “pharmacy” yielding thousands of previously unknown substances found no where else.  Compounds from tropical flora relieve headaches, help treat glaucoma and provide muscle relaxants used during surgery.  The Amazon Rainforest has also yielded guanine for the treatment of malaria and periwinkle for the treatment of leukemia.  Given the rainforest’s teeming biological diversity, its value to humanity as a laboratory of natural phenomena and as a medical storehouse is priceless.

Recently, the “pharmeceutical” benefits of the Amazon have been expanded to the potential of healing the Earth from the plague of plastic waste. A group of Yale students discovered, quite by accident,  a fungus that  appears to be quite happy eating plastic in airless landfills. This fungus shows a voracious appetite for a very common group of plastics: polyurethane.

Human beings have only begun to catalog and name the creatures that live here.  Home to thousands of varieties of flowering plants, the rainforest supports endless varieties of hummingbirds, butterflies and insects such a the rhinoceros beetle and the army ant.  It is also home to the spider monkey, pink and gray dolphins, Amazon river otter, piranha, anaconda, jaguar, blue and yellow macaw, toucan, harpy eagle, fishing bat, tapir sloth, tarantula, Cayman crocodile, manatee, etc.

The Amazon Rainforest, the largest rainforest and richest ecosystem on earth, has stood inviolate for thousands if not millions of years since its creation.  The profusion and variety of life forms present in the rainforest and its critical role in supplying the world with air has resulted in its being called the “Heart and Lungs” of the Planet. Indeed, the majority of the world’s oxygen is supplied by its dense foliage and teeming plant life which upon first inspection, seems boundless and indestructible.

A recent study by the Smithsonian Institution indicates that about 90% of all of the plant and animal species extant in the world today reside in the Amazon Rainforest and depend upon its complex ecology.  As the greatest repository of nature’s treasures and most significant source of air, the Amazon Rainforest is crucial to the survival of all life on the planet and to human beings’ understanding of their place in the web of life.  In the words of Guatama Buddha, “The forest is a peculiar organism of unlimited kindness and benevolence that makes no demands for its sustenance and extends generously, the products of its life and activity.  It affords protection to all living beings.”

Before the arrival of Europeans and up to the third decade of this century, the Amazon Rainforest covered nearly 45 million acres in what is today Brazil, parts of Venezuela, Colombia, Peru and Ecuador.  Brazil has the greatest amount of tropical forest in the world.  It is also experiencing the worse losses:  between twelve million and twenty two million acres a year, according to the World Resources Institute.

Brazil’s rainforest is being decimated by a vast army of homesteaders, farmers, ranchers and corporate interests that include large scale mining and intensive farming. Drilling and mining leave scars, and farmers find that raising crops quickly exhausts the thin soil of cleared forest land.  Many farmers merely abandon their plots and clear new ones.  The cultivation of crop production leaves rivers polluted with chemicals.  The extraction of gold and other metals fouls waterways with mercury and other toxins used in processing.

Today, scarcely twenty years since the intensification of the development of the rainforest, it has shrunk to 88% of its original size.  It is estimated that each second, an area the size of a football field is destroyed, adding to the daily toll of approximately fifty thousand acres.  In one year, an area the size of Italy is decimated and made uninhabitable to nearly all forms of life.  Already thousands of plant and animal species about whom little was known have been irrevocably lost to the bulldozer, the chain saw and to the slash and burn methods employed by regional farmers, ranchers and miners.

Although its arboreal canopy reaches hundreds of feet into the air, the rainforest and its groves of giant trees are in fact rooted in very shallow soil and exist in a fragile balance.  The rainforest experiences an abbreviated life cycle in which the creation of top soil is bypassed through the efficient decomposing activities of tropical bacteria and fungi.  Rather than collecting in the soil, the nutrients are absorbed by the trees.  A layer of nutrient-poor soil in the rainforest is generally less than four inches deep.  Unlike other forests around the world, the rainforest once disturbed, cannot renew itself, remaining instead a barren sandy wasteland subject to erosion.

At the current rate of destruction, parts of the Amazon promise to turn into great stretches of desert within our lifetime.  The repercussions of this activity are global.  As the rainforest gets smaller, it is less able to supply the world with much needed oxygen or to absorb as much carbon dioxide contributing to global warming and the greenhouse effect.  The burning forest adds even more carbon dioxide to the atmosphere jeopardizing the stability of ecosystems worldwide.

Given the immense size of the Amazon Rainforest and it’s unimaginable bio-diversity, we have just begun to scratch the surface of the solutions residing within. If we can find cures for cancer, malaria, polyurethane waste and more; perhaps it holds the ability to cure the incomprehensible problem we face today of plastic fragments choking our oceans? What other mysteries lie hidden within the green foliage and moist soil?

Did you reuse your cotton bag 327 times?

As crazy as it may sound, plastic shopping bags have risen to the top of the environmental scene – not as a villain but as the winner!

A report released by the Environmental Agency in England has shown though life cycle analysis that plastic shopping bags are most often the best environmental solution, especially if you reuse them once as a can liner (or to clean up after your dog).

The actual report can be downloaded here: Plastic Bag Environmental Comparison

So, unless you reuse your paper bag 6-7 times, or your cotton bag over 327 times, when the cashier asks “Paper or Plastic?” stick with the plastic!

What can you claim with ENSO plastics?

At the retail store I am bombarded with “green” claims; earth friendly, recycled, energy efficient, recyclable, compostable, biodegradable, reuseable and renewable just to name a few. It can become overwhelming even for a person who is intimately involved with the environmental industry to sort through these claims and determine what each means. It seems that a majority of the brand owners don’t even understand themselves what the claims mean, so how can consumers be expected to understand?

To combat this confusion, ENSO is creating uniform and standard recommended claims for brands using products enhanced with ENSO technology. Creating a consistent message will alleviate much of the confusion and give consumers solid science to base their understanding upon.

Here is an example of an appropriate claim and qualifier:

ENSO accelerates the natural biodegradation of plastics

Qualifier

ENSO accelerates the natural biodegradation of plastics in biologically active landfills and anaerobic digesters as validated by independent certified laboratories using ASTM International test methods (ASTM D5526 & ASTM D5511).

Independent 3rd party testing has shown up to 24.7% biodegradation within 160 days in optimized conditions. Actual rate of biodegradation will vary dependent upon environmental conditions and the biological activity of microorganisms surrounding the plastic.

The qualifier identifies how you can support the claim and ensure that consumers understand exactly what you mean by the claim. It is an important aspect of your overall message.

The above claim and qualifier are an accurate representation of the performance you can expect when using ENSO enhanced plastics and are completely backed by third party independent test data to ensure the protection of your brand as you continue upon the path toward total sustainability!

** In the state of California it is unlawful to label any food or beverage container or plastic bag as biodegradable regardless of actual performance.

 

ENSO PLASTICS DEVELOPS NEAR-PERFECT PLASTIC BOTTLE

As featured on Newhope 360; Full Article link http://newhope360.com/packaging/enso-plastics-develops-near-perfect-plastic-bottle


ENSO Plastics develops near-perfect plastic bottle

Wed, 2011-11-09 13:09

While many can’t imagine life without bottled water, it wasn’t that long ago—the 1960s, in fact—that plastic bottle production didn’t exist. Today, polyethylene terephthalate (PET) is the plastic of choice in the beverage industry. According to ENSO Plastics, more than 75 percent of the ubiquitous bottles (and 94 percent of all plastics) end up in landfills. “We really want to solve the world’s plastic pollution issue,” said President Danny Clark of the Mesa, Ariz.–based company. ENSO is taking advantage of this statistic with its current solution: fully biodegradable and recyclable PET plastic.

“When we started, some of the cofounders had experience with bottled water companies. I was one of them,” said Clark. “We were exposed on a regular basis to the environmental impacts that bottled water has in the environment.” Customers asked the co-founders regularly for alternatives. Continue reading

ENSO Plastics Official Statement Regarding California Lawsuit

 

In response to the recent media coverage regarding the California Attorney General filing a lawsuit against companies doing business in California that are labeling their product packaging as “biodegradable”. At this time ENSO Plastics is unable to comment specifically about the details of any such lawsuit as we have not had the opportunity to read the lawsuit.

We do however, strongly believe in our company’s mission to rid the world of plastic pollution and have been dedicated for the past three years in bringing the most sound environmental plastic solutions to market. We stand behind our technology and the claims that our company makes in stating that standard plastics enhanced with our biodegradable additive are fully recyclable and if placed in an environment with microbes, will naturally biodegrade.

We in no way claim that our technology is the silver bullet to solving the massive plastic pollution issue our world faces. It is however a huge step in the right direction and a cost effective solution that can be implemented within todays manufacturing and end-of-life options. We do recognize that a key component in continuing to move towards the perfect solution is to address the sourcing issue of plastics and to move away from fossil fuel based polymers. Our company is one of a few companies who are diligently working towards offering renewable bio-polymers (with the same physical properties) that will address the sourcing issue which also provides a fully recyclable and naturally biodegradable end-of-life option. We also recognize that our industry is young and we have a ways to go to improving the processes to allow our industry to mature as needed. We are continually improving the testing process and working with organizations to provide more thorough data and information for the public.

Each of us have contributed in one way or another to our global plastic pollution issue and it will be up to each of us to work together to solve the very problem we created. The public is ready for change and is looking for more environmental packaging and plastic solutions. It is unfortunate that such a law could get passed that would inhibit biodegradable technologies from being labeled as such. We fully support the premise of the law to prevent “greenwashing”, but do not agree that banning or preventing the use of proper labeling of a package as a step toward solving that problem. We believe consumers should be allowed to know if their product packaging is biodegradable and if so, provided with the details of how and in what environments the packaging will biodegrade.

It is also unfortunate that this law specifically allows the use of product packaging which is compostable to be labeled as “compostable”, but for competing technologies such as ours, makes it illegal for companies to properly label their packaging as “biodegradable”. It leads one to question the true intent behind the law, especially when that law was supported and sponsored by the compostable plastics industry organization. It’s unfortunate, because there is currently very little infrastructure in place for composting facilities to accept compostable plastics. As a result, tons of compostable plastics end up in either the recycle stream or in landfill environments; neither provides the environmental benefit of the product. In our view of greenwashing, a company making a claim to an environmental benefit that cannot be achieved is the most serious form of “greenwashing”.

ENSO Plastics has all intentions of working with the California Attorney General to comply with the labeling law. We will continue forward with pursuing our mission to help solve the world’s plastic pollution issue and continue to improve the science and validity of our young industry. We would invite everyone to join with us in our efforts towards a cleaner future.

Sincerely,
Danny Clark
President
ENSO Plastics