Tag Archives: ENSO biodegradable bottles

Compostable Products Go Straight To Landfill

In Marin, Many Compostable Materials Go Straight to Landfill

Despite proliferation of biodegradable foodware, those products aren’t being composted at the two waste management facilities in Marin. As a result, people’s choices might not be as eco-friendly as they think.

Greenwood School 8th grader Leyla Spositto and her classmates knew something was amiss just a few weeks into the school year when they saw the trash piling up.

Greenwood administrators had chosen San Ramon, Calif.-based Choicelunch as the school’s new lunch provider largely because nearly all of its packaging was made of compostable materials – from corn-based bio-plastic cups to potato-based “spudware” forks and spoons – and therefore would be diverted from the landfill. The move fit with one of the school’s core values of environmental stewardship.

But when Greenwood environmental science teacher Julie Hanft told the students that so-called bio-plastics weren’t being composted in Marin, Greenwood’s 7th and 8th graders, who handle the school’s trash as part of their after-school chores, were stunned.

“All of the stuff from Choicelunch was going to the trash,” Spositto said. “We were very surprised that a system didn’t exist for the packaging to be composted like it was supposed to be.”

So was Greenwood School Director Debra Lambrecht.

“We were very, very surprised,” Lambrecht said. “And the fact that the children were shocked and appalled? We thought, ‘Well right on.’”

With lots of packaging that could neither be composted nor recycled – bio-plastics can’t be recycled like regular plastic – the students and Hanft arranged to have a large collection of their Choicelunch packaging taken to Recology near Candlestick Park in San Francisco, where bio-plastics are composted. But they quickly realized that having a parent or teacher drive a truck across the Golden Gate Bridge weekly wasn’t exactly a sustainable solution.

Greenwood’s students and school administrators found themselves at the crossroads of an issue that all involved say is riddled with complexities. As a result, many Marin residents who think they’re making eco-friendly decisions – buying only compostable plastic cups for their children’s birthday party, for example – are sending more garbage to the landfill than if they were using recyclable materials.

“That’s the big shame about bio-plastics – people think they’re doing the right thing,” said Jessica Jones, the district manager for Redwood Landfill and Recycling Center in Novato, where most of the trash, recycling and compost from northern and southern Marin is taken.

Jones said Redwood, a subsidiary of Waste Management Inc., doesn’t compost bio-plastics because the compost the company produces is sold to and used on organic farms. If its compost contained any materials that took longer to biodegrade – like corn-based foodware or bio bags, for instance – it could not be certified by the Organic Materials Review Institute, the Eugene, Ore., which provides independent review of products to be used in organic farming.

Jim Iavarone, managing director at Mill Valley Refuse, which sends all of its waste to Redwood, said the inability to compost bio-plastics “has been a continual issue for us” ever since the company rolled out compost service in August 2010.

“The makers of these products and food services (like ChoiceLunch) have hung their hat on that,” Iavarone said. “It’s a good idea that just isn’t delivering as hoped or as advertised.”

Devi Peri, the education coordinator for Marin Sanitary Service, which serves most of Central Marin, including San Rafael, Larspur, Corte Madera, San Anselmo, Fairfax and the Ross Valley and Las Gallinas sanitary districts, says her company is in the same boat as Redwood.

“Not all compostable plastics are created equal and we don’t even have any way to see if it’s a true biodegradable plastic,” she said.

But compostable bio-plastics are accepted by other Bay Area waste companies like Recology, which processes most of its OMRI-certified compost at Jepson Prairie Organics, a facility in Vacaville.

“There is a clear disconnect between how Recology can compost bio-plastics and how we can’t,” Jones said.

The difference, according to OMRO Program Director Lindsay Fernandez-Salvador, is that Recology has an extensive “foreign removal program.” That program, essentially a filtering system, calls for manual removal of any all bio-plastic products not clearly labeled compostable. Under California law, products labeled compostable must meet the Biodegradable Products Institute’s ASTM D6400 standards, which “determine if plastics and products made from plastics will compost satisfactorily, including biodegrading at a rate comparable to known compostable materials.”

“Any compost may become contaminated with compostable plastics, but if the program has a reasonably robust foreign removal program, that satisfies OMRI’s requirements,” Fernandez-Salvador said.

A foreign removal program means that bio-plastics that aren’t labeled clearly or don’t meet the standards either end up in a separate compost stream of only products that will degrade at a slower rate than food scraps or yard waste – or they’re tossed into the landfill.

Peri said there is some industry skepticism about how much bio-plastic material is actually ending up in the compost streams at places like Recology.

“I have a feeling that it might be more (going to the landfill) than people might want to hear,” Peri said. “And maybe more than they are reporting.”

Jack Macy, the Zero Waste Coordinator for the city of San Francisco, acknowledged that some “compostable stuff that is not labeled well ends up in the landfill.”

“But the reason that we accept compostable bags and compostable foodware is that it allows us to capture more of the organics that we’re trying to divert from the landfill,” Macy added. “Every composter would prefer not to take that stuff because of the challenges of identification and the breaking down aspect. It’s easier to say no.”

That’s the choice Redwood has made, which spurred Greenwood’s 7th and 8th graders to take on the issue as a community action project. The students researched other options, spoke with potential vendors and made a presentation to Lambrecht right before the holiday break. The school intends to move to a completely independent lunch system next year, with an in-house chef making lunches dispensed with reusable plates and utensils. The move is one that only schools as small as Greenwood, with just 127 students, can afford to make.

In the meantime, Greenwood administrators have decided to dump Choicelunch and explore alternative options for the rest of this year.

“It is very disappointing,” said Karen Heller, the director of business development for Choicelunch, whose company supplies lunches for more than a dozen schools in Marin, including the Mill Valley and Ross Valley school districts. “But it hinges on the waste management company. Our hands are kind of tied.”

For two days a week, the school’s 8th graders will be selling lunch from Grilly’s and Tamalpie Pizzeria (one day apiece) to raise money for their 10-day spring trip. Lambrecht hopes to have a new deal in place in the coming days for the other days.

“We’ve really felt like we’ve accomplished something,” Spositto said of the student’s campaign. “We’re glad we had the authority to make this happen.”

ENSO Plastics smart marketing at PACK EXPO

ENSO Plastics won over PACK EXPO attendees and exhibitors with their simple yet in your face marketing strategy.

A young woman, wearing a cleverly designed skirt from single use plastic waste and a sign stated “Is your packaging Biodegradable. ENSO plastics” As she walked down the aisles, heads turned, and people had to ask “Okay, you gotta tell me, What is ENSO?”

With the thousands of dollars spent  adorning booths with hopeful marketing tactics, its refreshing that something as simple as in your face, emotionally jarring marketing can get your message across more successfully.

Got a photo of the plastic dress girl? Make sure to post it on ENSO’s facebook wall!

 

girl in plastic outfit at PACK EXPO

PEC Making Moves

Plastics Environmental Council

We have just returned from Atlanta, Georgia where the first PEC (Plastics Environmental Council)   conference was held.  As you recall, ENSO organized the EPC (Environmental Plastics Coalition) to fight the proposed bill AB1454 in the state of California, and many answered the call resulting in a successful veto of the anti-competitive, and anti-truth in labeling bill.  From that successful organizational effort, all saw the need to continue the effort of keeping the market friendly and educated on biodegradable plastic products on a national level, so from this initial organization, the PEC was formed.  I was truly floored by the amount of “top in their field” experts who are participating in the PEC.  It was held on the campus of Georgia Tech. (who is a major participant of research and support of our technology as it applies to the marketplace) and as everyone in attendance introduced themselves, it became quite apparent that we had a second to none force on our side.  From landfill research engineers, to polymer scientists, to political and legal professionals, the deck is extremely “stacked” in our favor to a solid future in the marketplace.

That being said, no one works for free, and although these individuals are in an attitude of assisting the progress of environmental friendly plastics, their activity and research needs funding.  Please contact me to get more details on how you can get involved.  Some of this year’s activities for the PEC will include; Creating an ASTM standard specification for Anaerobic and Aerobic biodegradation (a pass/fail specification), work in California with creating a good green packaging law, FTC education, biodegradability certification, massive amounts of pertinent information regarding how your products behave in landfill environments, recycle stream impacts, and more.

As you might already know, ENSO has already delved deeply into most of these items, now the good news is that we have more individuals assisting in the cause and the numbers are growing!  Please let me know if you have any questions about what is going on, and also find out how you can get involved!

Sincerely,

Del Andrus

Coco-Colas plant bottle business plan

This isn’t the most recent use for those up to date with cokes plant bottle. This article however goes into a more detailed business view of Cokes decision and long term goals. Definitely worth the read, comment and let me know what you think!

http://www.greenwashingindex.com/ad_single.php?id=7083

Coca-Cola in green bottles

http://www.guardian.co.uk/sustainable-business/coca-cola-green-plant-bottles

The software drinks giant has come up with a technology to use plant material in plastic bottles. But it is not an easy task

    Coca-Cola has come up with a formula that will reduce the use of plastic in making bottles. Photograph: George Frey/Rueters

    You could forgive Scott Vitters the occasional spate of Monday morning blues. As global head of sustainable packaging at The Coca-Cola Company, he has an unenviable job. Some might even call it impossible. Every day, consumers around the world slurp their way through 1.5 billion Coca-Cola products. Packaging those servings accounts for the most sizeable chunk of the company’s environmental footprint. Now Vitters’ bosses back at Coca-Cola’s Atlanta HQ are saying they want to double sales over the next decade.

    Yet today finds him surprisingly upbeat. Hitting UK shelves today is PlantBottle, what Vitters calls a “breakthrough technology” destined to green not just Coca-Cola but the entire packaging industry.

    “We know that we need to do more with less and we know that we can do that through technological innovations like PlantBottle”, he says.

    So how does it work? The theory is simple. Plastic bottles are currently made out of a variety of petroleum-based materials. What the chemistry wonks in Coca-Cola’s labs have done is replace some of those with plant materials.

    The result is to reduce reliance on fossil fuels and cut carbon emissions by 8-10% in the process. Furthermore, the plant-based solution is an identical match with polyethylene terephthalate (PET), a recyclable plastic already widely used by Coca-Cola.

    “This isn’t about an innovation that’s just a little green widget or flavour of the day … We’re taking the next step of the journey to decouple our plastic from fossil fuels”, Vitters insists.

    The numbers seem to back him. Coca-Cola expects to shift over 200 million packs in the UK this year as it switches 500ml bottles of Coca-Cola, Diet Coke and Coke Zero to the greener formula.

    The UK is no guinea pig. PlantBottle has already been around for a couple of years, rolled out first in Denmark to coincide with the UN climate change summit in Copenhagen. Coca-Cola currently produces around five billion packs in twenty markets.

    Vitters is adamant that the new bottle makes long-term financial as well as environmental sense. Although the plant alternative currently costs more than petroleum, he expects that to drop to parity or below by 2020 – due to predicted oil price increases and efficiencies in the PlantBottle supply chain.

    Recyclability is another big win. As one of the toughest, most efficient polymers around, PET can be reused many times. That way, the plant material stays within a “continuous loop” – one up on biodegradable plastics that go to landfill and “then sit like a petroleum bottle”.

    The impacts across industry could also be profound. Coca-Cola is working with Heinz to help it produce a PlantBottle-packaged ketchup. Toyota is also said to be interested to use the technology for the seats in its cars.

    “Across all commodity plastics, this same pathway could be followed. For HDPE [High Density Polyethylene] plastic, polyethenes, films and even PVC”, says Vitters.

    Although Coca-Cola is in the process of patenting the application of the plant-based technology (known as Bio-MEG) to containers, Vitters insists that Coca-Cola ultimately intends for the technology to be open. “This is bigger than Coke”, he says magnanimously. Vitters isn’t even again arch rivals Pepsi getting a look in too. “We believe that our competition will need to be part of this journey.” Coca Cola’s sustainable packaging chief may have skipped to work this morning, but his job is still far from complete.

    Work to do

    PlantBottle is a step in the right direction, but it’s far from the final destination. The plant-based alternative only covers ethyleneglycol – around 22.5% of PET by weight. Coca-Cola has yet to develop a commercially viable plant solution for the other 77.5%, comprising the petroleum-based compound terephthalic acid.

    Vitters admits that his marketing team would have been “much happier” if the ratios were the other way around. As it is, the US beverage giant hopes to have a market-ready, plant-based alternative to terephthalic acid by 2015. A date for its integration into brand packaging is yet to be set.

    His problems don’t stop there. ‘Plant-based materials’ all sounds very wholesome and green, but not if their production requires excessive water use, pushes up food prices (by using arable land for non-food purposes) or relies on genetically-modified technologies.

    As the Coca-Cola packaging head admits: “We knew inherently that just because it’s a plant, it isn’t better for the environment by any stretch of the imagination…this programe fundamentally rests on the ability to demonstrate proven social and environmental sustainability.”.”

    For the moment, the company has turned to Brazil and the bio-ethanol extracted from the country’s vast sugar cane plantations. As a major buyer of Brazilian sugar already, Vitters says Coca-Cola has a “comfort for getting the programme started” there.. Not that the social and environmental record of Brazillian sugar is perfect. Far from it. Vitters admits there is still “a lot of growth room to meet [Coca Cola’s] sustainability criteria”. As a result, the company is working with WWF towards a sugar certification scheme in Brazil.

    In the future, Vitters conceded that it’s not sustainable to “source only from Brazillian sugar cane. If PlantBottle takes off in the way he predicts, Coca-Cola will have to look elsewhere, as well as to other plants. Excessive demand could present supply problems as well as pushing sugar prices up – something, Vitters jokes, that “wouldn’t be a good career choice” for him.

    Wisely wary

    The clever polymer chemists in Coca-Cola’s labs have identified other potential feedstocks, but the company is wary about jumping in too fast.

    “We need to be very careful about expanding use of land at a time when we think agricultural environments for feeding a growing population are going to be essential”, says Vitters, who acknowledges the need to proceed “responsibly”..

    The US drinks giant is therefore looking to second-generation technologies focused on agricultural waste, such as switch grass, pine bark, corn husks and fruit peel.

    Even then, challenges still exist. Supply is one. Finding such agricultural bi-products in commercial volumes is no easy task. Land productivity represents another issue. In many parts of the world, agricultural waste is typically returned to the soil as a natural fertiliser.

    “Disruptive” though PlantBottle may be, it falls far from enabling Vitters to fulfil his sustainable packaging brief completely. Commercialising a plant-based solution for the terephthalic acid portion of PET would help considerably. But we still have to wait for 2020 until Coca-Cola bottles of all sizes boast the 22.5% plant content.

    Nagging at his mind as well must be the fact that Coca-Cola was recently thrown out of the prestigious Dow Jones Sustainability Index. More galling still, the Index praised Pepsi as a “supersector leader”.

    There’s a silver lining, though as Dow Jones did award Coca-Cola an “uptick” for its packaging and material sourcing – another reason Vitters’ Monday shouldn’t be too blue.

Military open burn pits cause illnesses

With all the hype online regarding methane emissions from biodegradable plastics I couldn’t help but find the article below relevant. Check it out, let me know what you think in the comment box below!

 

US Military’s Open Burn Pits in Afghanistan May Be Making People Sick

by Jaymi Heimbuch, San Francisco, California on 08.23.11

Science & Technology

This is the never-ending burn pit at Balad. It’s a rather crude waste disposal method (burn off anything that burns, then sell the rest in bulk to Iraqis for metal recycling), but it works well enough — except when the wind blows the smoke through the rest of the base. I lived about 300 meters away from this burn pit in q3/q4 2004, which was…sometimes unpleasant.”

J. Malcolm Garcia has written a piece on Guernica on the strange smell of burning plastic that comes from the American military base just outside of Bagram Village in Afghanistan. The military burns garbage — an average of 10 pounds of solid waste per person inlcuding “computers, motorbikes, TVs, shoes, and even human feces” — to dispose of it, but the method releases toxins that could be causing illness.

Garcia writes, “As of last year, the United States Central Command estimates that there were 114 open burn pits in Afghanistan. According to a public information officer at Bagram Airbase who asked not to be identified, there were twenty-two burn pits in Iraq as of 2010. Used since the beginning of both wars, burn pits have consumed metals, Styrofoam, human waste, electronics and even, in some cases, vehicles and body parts. Diesel and jet fuel keep the pits burning, adding their own mix of dangerous elements.”

We know of the issues of improper recycling of electronics — e-waste dumps have taught, and are teaching us, about the consequences to human health, water supplies, air quality and even soil quality of burning toxic materials such as electronics. Open burn pits with everything tossed in, well, it is clearly an unhealthy idea, and that is acknowledged by the US EPA.

“Military officials declined to comment on the decision to use open burn pits, but the U.S. Environmental Protection Agency bans open pit burning of materials that discharge toxic chemicals and whose smoke can contribute to the risk of cancer, asthma and reproductive problems. The EPA also prohibits open pit burning grass and leaves, food and petroleum products such as plastic, rubber and asphalt,” writes Garcia.

Garcia reports that there has been an uptake in respiratory diseases among US soldiers returning from Iraq and Afghanistan, and we can guess that local laborers and residents are also being affected.

While some say that this was the cheapest, easiest solution to the garbage, it certainly isn’t the smartest. One soldier says that it’s probably just too hard to get people to recycle because putting trash convoys on the road is too risky. However, we’ve seen the level of ingenuity coming out of Afghanistan when it comes to repurposing materials into something useful.

Garcia visited the area to find out more about the open pits — the reasons why, and what soldiers and officers think about the “solution” for garbage — and has a fantastic article written about it. I highly recommend reading it all the way through.

Follow Jaymi on Twitter for more stories like this

PET bottles Sink or Swim?

Read the below article and it got me thinking. What’s interesting is that PET (what bottles are made of) does not float…even if it fragments. The plastics that are swishing around in the Garbage patch are not PET bottles and a lot of people do not realize that. I definitely do not think that just because bottles, or PET sink, that that is not pollution because its still there. But there are SO many other products out there…medicine bottles, laundry bins, storage containers, scissor handles,trash cans,caps, product packaging, etc. why is always the “bottles” that get pointed out? I think its important for people to make changes in their habits/lifestyles to better the earth…but until companies make the decision to do so as well, a lot of us will find it almost impossible to avoid all of the plastic that we accumulate. We need solutions, that will work…no green washing…so companies and consumers can make the right decisions about the earth friendly products they will implement in their lives.

 

 

 

Plastic: It’s what’s for dinner

Posted by on August 19, 2011

Conservation of mass often applies to college-level physics problems: in a closed system, mass can neither be created nor destroyed. In the case of the Great Pacific Garbage Patch – a gigantic section of the ocean littered with an unusually high amount of man-made trash — the system is clearly not closed. Yet conservation of mass is almost precisely what we see, both in the Pacific and Atlantic Oceans: more than 20 years of waste plastic studies in these oceans have demonstrated that the garbage patches are neither growing in size nor shrinking. They have conserved their mass. While plastic production rates have skyrocketed, as well as human consumption of plastic-contained goods, the plastic masses in these oceanic gyres (very large circular current patterns spanning thousands of miles) are incontrovertibly the same now as they were in the 1980s.

 

Interesting. If the rate at which plastic enters the patch has increased while the total mass of the patch has remained constant, then there must have been a corresponding increase in the rate at which plastic leaves the patch, to balance. Some scientists have hypothesized that the depths of the oceans act as plastic “sinks” from which waste never returns. If this were true, huge collections of settled ocean plastic debris should be established across the world. But for all their efforts, scientists have not been able to locate such sinks. With no evidence to support the ocean sink hypothesis, researchers have been looking for alternative answers for decades. What they have recently found may surprise you.

In a recent article appearing in Nature News, marine chemist Tracy Mincer and colleagues at the Woods Hole Oceanographic Institution (WHOI) reported the observation of oceanic bacteria actively consuming bits of plastic recovered from ocean gyres. At a glance, their result are not so shocking. After all, we have long known that microbial communities can (slowly) degrade plastic in landfills, over many years. However, it had been previously thought that the ocean gyres were too nutrient-poor to sustain substantial bacterial colonies. Therefore, the group’s findings help shed light on what has been a rather intriguing puzzle to scientists.

Scanning electron micrograph of the same sheet of plastic shown above reveals millions of plastic-eating bacteria

Of course, all scientists know that by answering one question, hundreds more arise. Most importantly, currently no one knows what chemical compounds microbes degrade plastic into. They could be biologically benign compounds, or they could be toxic. Concentrated breakdown of plastic into toxic compounds in ocean gyre masses, or landfills, could spell eventual disaster for local ecological communities. Through biological magnification, toxins can be stored inside animals’ bodies. As prey is consumed at higher and higher levels up the food web, the largest predators end up with the highest concentrations of toxins – think the bald eagle and DDT. Then multiply the issue by the size of the Great Pacific Garbage Patch, which is swirling away inside the largest ecosystem on the planet.

Whatever scientists determine about the toxicity of the microbial degradation products of plastic, the rest of the conserved mass of floating plastic will still be there. If we continue our current plastic consumption as societies, then billions of micron-sized particles of human trash will continue to float in our oceans for decades or centuries, just flinking along while fish, whales, and seabirds consume them for dinner. Of course, we can also clearly see that preventative measures would have a profound effect here: if we actively reduce the mass of plastic entering the system while microbial degradation activity remains high, then the total mass of plastic in the oceanic gyres will also decrease. In other words, your actions today directly contribute to the health of our oceans in the future.

I urge you to think about consumption habits that you can change, like carrying a reusable water bottle instead of purchasing bottled water. I never go anywhere without my half-liter Nalgene. Also, you will be happy to know that the I Heart Tap Water campaign is well underway here at UC Berkeley. You can find campus water bottle filling stations on a Google map here.

It’s your choice. You can either let ocean microbes struggle to clean up our oceans for us, or you can actively prevent the contamination of our water with plastic debris by choosing to reduce your plastic consumption and recycling as much as possible.

PET bottles, Sink or Swim?

Read the below article and it got me thinking. What’s interesting is that PET (what bottles are made of) does not float…even if it fragments. The plastics that are swishing around in the Garbage patch are not PET bottles and a lot of people do not realize that. I definitely do not think that just because bottles, or PET sink, that that is not pollution because its still there. But there are SO many other products out there…medicine bottles, laundry bins, storage containers, scissor handles,trash cans,caps, product packaging, etc. why is always the “bottles” that get pointed out? I think its important for people to make changes in their habits/lifestyles to better the earth…but until companies make the decision to do so as well, a lot of us will find it almost impossible to avoid all of the plastic that we accumulate. We need solutions, that will work…no green washing…so companies and consumers can make the right decisions about the earth friendly products they will implement in their lives.

 

 

Plastic: It’s what’s for dinner

Posted by on August 19, 2011

Conservation of mass often applies to college-level physics problems: in a closed system, mass can neither be created nor destroyed. In the case of the Great Pacific Garbage Patch – a gigantic section of the ocean littered with an unusually high amount of man-made trash — the system is clearly not closed. Yet conservation of mass is almost precisely what we see, both in the Pacific and Atlantic Oceans: more than 20 years of waste plastic studies in these oceans have demonstrated that the garbage patches are neither growing in size nor shrinking. They have conserved their mass. While plastic production rates have skyrocketed, as well as human consumption of plastic-contained goods, the plastic masses in these oceanic gyres (very large circular current patterns spanning thousands of miles) are incontrovertibly the same now as they were in the 1980s.

 

Interesting. If the rate at which plastic enters the patch has increased while the total mass of the patch has remained constant, then there must have been a corresponding increase in the rate at which plastic leaves the patch, to balance. Some scientists have hypothesized that the depths of the oceans act as plastic “sinks” from which waste never returns. If this were true, huge collections of settled ocean plastic debris should be established across the world. But for all their efforts, scientists have not been able to locate such sinks. With no evidence to support the ocean sink hypothesis, researchers have been looking for alternative answers for decades. What they have recently found may surprise you.

In a recent article appearing in Nature News, marine chemist Tracy Mincer and colleagues at the Woods Hole Oceanographic Institution (WHOI) reported the observation of oceanic bacteria actively consuming bits of plastic recovered from ocean gyres. At a glance, their result are not so shocking. After all, we have long known that microbial communities can (slowly) degrade plastic in landfills, over many years. However, it had been previously thought that the ocean gyres were too nutrient-poor to sustain substantial bacterial colonies. Therefore, the group’s findings help shed light on what has been a rather intriguing puzzle to scientists.

Scanning electron micrograph of the same sheet of plastic shown above reveals millions of plastic-eating bacteria

Of course, all scientists know that by answering one question, hundreds more arise. Most importantly, currently no one knows what chemical compounds microbes degrade plastic into. They could be biologically benign compounds, or they could be toxic. Concentrated breakdown of plastic into toxic compounds in ocean gyre masses, or landfills, could spell eventual disaster for local ecological communities. Through biological magnification, toxins can be stored inside animals’ bodies. As prey is consumed at higher and higher levels up the food web, the largest predators end up with the highest concentrations of toxins – think the bald eagle and DDT. Then multiply the issue by the size of the Great Pacific Garbage Patch, which is swirling away inside the largest ecosystem on the planet.

Whatever scientists determine about the toxicity of the microbial degradation products of plastic, the rest of the conserved mass of floating plastic will still be there. If we continue our current plastic consumption as societies, then billions of micron-sized particles of human trash will continue to float in our oceans for decades or centuries, just flinking along while fish, whales, and seabirds consume them for dinner. Of course, we can also clearly see that preventative measures would have a profound effect here: if we actively reduce the mass of plastic entering the system while microbial degradation activity remains high, then the total mass of plastic in the oceanic gyres will also decrease. In other words, your actions today directly contribute to the health of our oceans in the future.

I urge you to think about consumption habits that you can change, like carrying a reusable water bottle instead of purchasing bottled water. I never go anywhere without my half-liter Nalgene. Also, you will be happy to know that the I Heart Tap Water campaign is well underway here at UC Berkeley. You can find campus water bottle filling stations on a Google map here.

It’s your choice. You can either let ocean microbes struggle to clean up our oceans for us, or you can actively prevent the contamination of our water with plastic debris by choosing to reduce your plastic consumption and recycling as much as possible.

 

 

Landfill gas will fuel America

With all the recent online stir about biodegradable plastics releasing methane too quickly the below article caught my attention. The problem is not the biodegradability of plastics, but more so the lack of attention to collecting it in a timely manner and using it for its amazing, natural benefits! In the past 100 years we as humans have worked so hard in making things convenient, disposable, and unnatural. The truth is,we live in nature, and nature has its own processes for cleaning things up…and it revolves around biodegradation. This article reminded me of the movie Dirt, which is a must see! It also reminds me of this article/video I recently found on treehugger….http://www.treehugger.com/files/2011/08/putting-a-price-on-poop-and-pee.php

Landfill gas is ‘awesome example of American ingenuity’
Share | Comment
Jim Johnson | WRN senior reporter

Aug. 8 — If using natural gas to garbage trucks is considered a home run, then using natural gas created by decomposition of trash and other organic waste could be viewed as a grand slam.

For Joanna D. Underwood, the potential for this kind of renewable gas use is huge around the country.

It was not that long ago that folks realized using natural gas could be a terrific step forward, said Underwood, president of Energy Vision, a nonprofit group in New York City concerned with transportation fuels and renewable energy. But the exact path was fuzzy, she remembered.

“The picture that has become much clearer in the last four years is the picture that involves renewable natural gas. And that is really this country’s first sustainable fuel. It’s renewable. It’s the lowest carbon-based fuel in the world,” she said.

Harvesting methane from sites such as landfills, waste water treatment plants and farms can help create a supply of domestic transportation fuel, she said. Creating an infrastructure to handle renewable natural gas allows communities and companies alike to better picture its future use.

“That’s pretty exciting. Every community, right now, can begin looking at renewable natural gas and the organic waste that they have in their jurisdiction,” she said.

“There is no other major option for significantly reducing our dependence on foreign oil right now other than natural gas: conventional natural gas and renewable natural gas,” Underwood said.

McNeilus Companies Inc. makes both traditional diesel-powered refuse trucks and CNG-powered vehicles.

Jeffry Swertfeger, the company’s director of marketing and communications, sees more and more interest from solid waste management companies wanting to close the loop between disposal sites and collection operations by using methane created by decaying waste as a transportation fuel.

“We call it the ultimate green machine, when you have a truck that’s picking up refuse that’s being powered by the methane from the refuse,” he said.

“I think that’s an awesome example of American ingenuity,” he said. “These are the guys who make this country great.”

One location he pointed to is Waste Management Inc.’s Altamont landfill in California, where methane gas is converted into liquefied natural gas to run company trucks in nearby markets.

That $15.5 million project uses about 3,000 cubic feet of landfill gas per minute to create about 13,000 gallons of LNG per day.

“It’s easier for cities and communities to envision making the fuel if they already have a way to distribute it,” Underwood said. “It can take the place of conventional natural gas. It also can be blended with it. They are chemically just about the same.”

Better labeling for Bio plastics

This article discusses an array of trending concerns in the plastics  market, give it a read!

Waste Management World

Report Calls for Better Labeling of Bioplastics

 

The European Commission’s DG Environment’s news service, Science for Environment Policy, has published a new report which outlines a roadmap for environmentally-friendly plastic design and the development of biodegradable plastics, as well as policy options to maximise benefits.

With such an enormous volume of plastic product sold on the world’s markets, an inevitable knock on consequence is an equally huge volume of plastics entering the waste stream, or in some cases escaping the waste stream and entering the environment, said the report.

One particular concern raised was ‘plastic soup’, which exists in the world’s oceans and seas, containing everything from large abandoned fishing nets to plastic bottles, to miniscule particles.

However, according to the report, the redesign of plastic products, both at the scale of the individual polymer and in terms of the finished product’s design, could help alleviate some of the problems associated with plastic waste. The authors claimed that thoughtful development and redesign could have an impact at all levels of the hierarchy established by the European Waste Framework Directive: prevention, re-use, recycle, recovery and disposal.

 

U.S. Government Launches Waste Electronics Strategy

The U.S. government has launched its National Strategy for Electronics Stewardship, which provides recommendations on steps the Federal government, businesses and citizens can take toward tackling the problem of used electronics. It is to target the goals identified by President Obama, of protecting human health and the environment from the potentially harmful effects of the improper handling and disposal the almost 2.5 million tons (2.27 million tonnes) of used electronics that is discarded in the U.S each year.

The announcement also included the first voluntary commitments made by Dell, Sprint and Sony to the U.S. Environmental Protection Agency’s (EPA) industry partnership, aimed at promoting the environmentally sound management of used electronics.

According to the administration, the strategy will:

  • Promote the development of more efficient and sustainable electronic products
  • Direct Federal agencies to buy, use, reuse and recycle their electronics responsibly
  • Support recycling options and systems for American consumers
  • Strengthen America’s role in the international electronics stewardship arena.

Under the strategy, the EPA and the General Services Administration (GSA) will remove products that do not comply with energy efficiency or environmental performance standards – from the information technology purchase contracts used by Federal agencies, and will ensure that all electronics used by the Federal government are reused or recycled properly.

Standards

In addition, the GSA said that it will promote the development of new environmental performance standards for categories of electronic products not covered by current standards. Several Federal agencies will work together to identify methods for tracking used electronics in Federal agencies to move toward reuse and recycling.

Key components of this strategy include the use of certified recyclers, increasing safe and effective management and handling of used electronics in the United States and working with industry in a collaborative manner to achieve that goal. As a first step in this effort, EPA Administrator Lisa P. Jackson has signed a voluntary commitment with Dell Inc. CEO Michael Dell and Sprint CEO Dan Hesse to promote a U.S. based electronics recycling market. Representatives of Sony Electronics also committed to improving the safe management of used electronics.

According to the EPA, the collaboration with industry is aimed at encouraging businesses and consumers to recycle their electronics with certified recyclers, and for electronic recyclers to become certified. There are two existing domestic third-party certification recycling entities, R2 and E-Stewards, and the electronics recycling industry is increasingly embracing these programs.

“A robust electronics recycling industry in America would create new opportunities to efficiently and profitably address a growing pollution threat,” said Jackson.

Reaction

John Shegerian, co-founder, chairman and CEO of Electronic Recyclers International (ERI) welcomed the announcement, and was encouraged to see the Federal government leading the way by establishing a policy to utilise only certified recyclers for its electronics processing, increase U.S. jobs, and reduce harm from U.S. exports of e-waste.

“As an R2 and e-Stewards certified company, ERI supports the safe handling and recycling of electronics here in the U.S. and abroad and looks forward to working with the Federal government in promoting scientific and technological developments to improve the electronics recycling process and maximise the recovery of valuable materials from discarded electronics,” he explained.

Meanwhile, Willie Cade, CEO, PC Rebuilders & Recyclers was also optimistic about the strategy’s potential to create jobs in the U.S.: “This will prove to be a very successful jobs creation and sustainability or ‘Green’ program…This is the first comprehensive sustainability strategy in our nation’s history,” he added.

Robin Wiener, president of the Institute of Scrap Recycling Industries (ISRI) commented on the Federal government’s position as the largest source of used and end-of-life electronics, and its commitment to lead by example in ensuring that it is the nation’s “most responsible” consumer of electronics.

“We are encouraged by the Obama Administration’s flat dismissal of burdensome and overreaching legislation that would ban exports and pull the rug out from under an industry that continues to create jobs and contribute to both the U.S. and global economy,” he said.

in brief

U.S. Study to convert landfill gas to hydrogen

BMW has launched the first phase of a program to validate the economic and technical feasibility of converting landfill gas into hydrogen.

BMW’s manufacturing plant in South Carolina is using hydrogen fuel cells to power nearly 100 material handling vehicles. If this is successful, follow-up phases of the project will provide infrastructure to use hydrogen to fuel the company’s entire fleet of material handling equipment.

UK: Waste to Energy Facility Given Go-Ahead

A 269,000 tonne capacity waste to energy facility has been granted planning permission near Ipswich, UK. The Environment Agency has issued the necessary draft permit for the site – effectively giving SITA UK the green light to proceed. Building work is due to start later this year and the plant is expected to be operational by December 2014.

The 25-year contract will be awarded by Suffolk County Council.

GM and ABB Demonstrate Battery Re-Use

General Motors and ABB Group have offered a potential solution to the problem of what to do with the lithium-ion battery packs used in a growing number of electric and hybrid vehicles, as those vehicles reach the end of their lives.

According to GM, the battery packs used in its Chevrolet Volt will have up to 70% of life remaining after their automotive use is exhausted. Earlier this year, GM signed a definitive agreement with ABB Group, a power and automation specialist, to identify joint research and development projects that would reuse the Volt’s battery systems.

The partners claim to have demonstrated an energy storage system that combines electric vehicle battery technology and a grid-tied electric power inverter. The companies are building a prototype that could lead to battery packs storing energy, including wind and solar energy, and feeding it back to the grid.

The system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.

– Turn to page 41 to read a summary of the report ‘Recycling of Li-ion Batteries: Trends and Challenges of the Future.

Scrap Industry Worth $90 Billion to U.S. Economy

The economic and environmental impact of the scrap recycling industry in the U.S. has been highlighted in a report from the Institute of Scrap Recycling Industries (ISRI).

The study, undertaken by John Dunham and Associates and commissioned by ISRI looks at different kinds of economic activity such as jobs and exports, at the national, state and congressional district levels. According to ISRI, the economic analysis shows that the industry creates over 137,000 direct jobs, rising to more than 459,000 jobs when the wider economic impacts are taken into account. In addition, the industry generates $10.3 billion in tax revenues for governments across the U.S. as well as delivering environmental benefits.

The industry also generates significant export revenue for the U.S. The report claimed that approximately 34% of the scrap materials processed in the United States are exported to over 155 other countries for manufacture into new products. This generates nearly $30 billion in export sales, significantly helping the U.S. balance of trade.

The total economic activity generated by scrap recycling in the U.S. exceeds $90.6 billion, according to ISRI, making the industry similar in size to the nation’s forestry and fishing industries combined.

in brief

U.S. Investment in New E-Waste Facilities

Garb Oil & Power Corporation has formed a joint venture with ACG Consulting to build seven e-waste recycling facilities within the next three years, with the first planned to break ground in South Florida in March of 2012. Garb said that it intends to start work on a new e-waste recycling facility every four months thereafter, at various sites in the U.S.

Haiti: Recycling Enterprise Initiative Launched

A ‘cash for recyclables’ program has been launched in Port-au-Prince, Haiti. The social enterprise project – Ramase Lajan – which means ‘picking up money,’ will expand the collection of plastics to create permanent jobs through a network of independently owned and operated neighbourhood collection centres. The initiative has been launched by Executives Without Borders, in partnership with CSS International Holdings and Haiti Recycling.

UK Wood Waste Down as Demand Rises

Largely due to reduced activity in the construction industry, wood waste arisings in the UK have fallen by 10% since 2007, according to the Waste & Resources Action Programme’s (WRAP) recently published Wood Market Situation Report.

Arisings from the construction industry showed a 13% decrease, while arisings from the furniture and joinery sectors fell by 23% and total arising fell from 4.5 million tonnes to 4.1 million tonnes between 2007 and 2010.

However, WRAP said that an increase in the amount of wood waste being used in the biomass sector has more than doubled over the same period to 500,000 tonnes in 2010. The total amount of wood waste recycled or used in energy recovery in the UK increased to 2.3 million tonnes in 2010 – more than half of all wood waste arisings. Exported wood waste has also increased, rising to almost 200,000 tonnes in 2010.

A combination of these factors has been reflected in lower gate fees for wood recyclers since early 2009. The report claimed that while recovered wood arisings are likely to grow gradually as the economy recovers, rising demand may put further downward pressure on gate fees.

Growing demand and falling supply have led to lower gate fees Credit: WRAP

Marcus Gover, director of the Closed Loop Economy at WRAP, said: “It’s easy to put the decrease in wood waste arising down to a reduction in construction activity during the recent economic downturn, but it’s also important to note that the construction industry – one of the biggest contributors to wood waste arising – has also taken proactive steps to reduce the amount of wood they send to landfill.”

According to WRAP, the introduction of site waste management plans in April 2008 requires construction companies to plan, monitor and measure the waste generated on site, as well as industry commitments such as Halving Waste to Landfill, launched by WRAP in 2008, have also had an impact.

Send your news to Waste Management World
e-mail: benm@pennwell.com

What percentage of methane is collected in landfills?

I recently came across an article by James Levis called Collecting landfill gas good step. This article is a reaction to a paper that Levis co-wrote with Dr. Morton Barlaz titled “Is biodegradability a Desirable Attribute for Discarded Slid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model.” That very paper started the jumping off point for the sudden out spurt of biodegradable plastic methane emissions articles all over the web this summer.

Spinoff headlines ranging from  “Study: Biodegradable plastics can release methane” to the reckless “Biodegradable products are often worse for the planet” were at the forefront of attention.

I had reacted to such articles in a previous blog which you can read here but after reading Levis Collecting landfill gas good step article, I came across some statistics that I just had to share!

greenhouse gas emissions methane

Levis stated in the article “ The foundation of this research is a life-cycle accounting of the greenhouse gas (GHG) emissions associated with discarding waste in both national-average and sate of the art landfills”    Now here is some interesting information,

An estimated..

35% of waste is discarded in state of the art landfills which collect generated methane and use it in beneficial ways

31% of waste is left in landfills without any gas collection occurring

34% of the waste is in landfills that collect and flare the gas

lanfill

The results of the research showed that there are significant benefits to collecting and beneficially using landfill gas. Levis addressed reactions to the research, one of the most common comments being “these materials are intended to be composted, therefore the results are irrelevant.” Levis reacted to the response by stating, “But these materials are generally not composted, and most areas of the country do not have the infrastructure for source-separated compostable collection and treatment of these emerging biodegradable materials. Therefore we need to understand the effect of their disposal in a landfill.”

Another common response to the research included that the conclusions were too broad, that they neglected emerging materials like bioplastics that do not appreciably degrade in landfills. Levis responded by stating that the argument seems misguided because these types of materials are not even technically biodegradable and the study’s only mention of bio-based, non biodegradable products was to say that it would lead to green house gas emissions in a landfill.  Levis closed the article by stressing the importance of analyzing the entire life cycle of a product to know if it is better to use a conventional or biodegradable material in the production, as well as environmental and economic factors, before making your final judgment.