Category Archives: Biodegradation

The great recycling hoax.

Manufacturers Beware!

Have you ever thought about where your plastic garbage goes?

Shopping for items packaged in plastic may end up costing you more in the long run; that is, if you discard the packaging incorrectly. The same could be true for plastic manufacturers if California passes their latest bill (Assembly Bill 521) on “extended producer responsibility”.

Right now; in San Francisco, California it is against the law to not recycle your trash.  That’s right…you; as a law abiding citizen must separate all of your garbage, recyclables, and compostable items.  To ensure that all citizens are complying with this law, trash auditors check garbage bins the night before it is scheduled for pickup. If you do not comply after several warnings, the non-complying residents will receive fines and/or have to take educational classes on recycling.

Taking this a step further, California is now working towards making plastic manufacturers responsible for the end of life of their product; ultimately, charging hefty fines for material that is not disposed of properly.  (This, after recently making the word biodegradable illegal on labeling)

So who is responsible for all of this plastic pollution that is littering our oceans and filling our landfills? Is it the consumer?  Is it the plastic manufacturer? Is it the recycling industry? (Who happens to discard more plastic than it recycles.) California may think they are doing the right thing by penalizing those who are in the path of plastic – from beginning to end – but they’re not supporting or encouraging better solutions…so who’s fault is it, really?

Despite whose responsibility this may be; it leads to a very important question…”Why are we not producing plastic that is biodegradable or even marine degradable? And, (ok, two questions) if there is a solution, why, as consumers and manufacturers, are we not jumping on that solution?”

I think that if there is a solution to this plastic pollution problem and a plastic manufacturer is using a product that is proven to be biodegradable and/or marine degradable, they are showing their end-of-life responsibility and it should be encouraged and rewarded amongst those companies; as well as, consumers who use such a product.

Does such a product exist?

Yes!

ENSO Plastics has created an additive, that when added to the plastic manufacturing process will cause the plastic to become biodegradable; as well as, marine degradable. There are two customizable blends that offer many options to manufacturers – ENSO RESTORE and ENSO RENEW.

This is the solution California needs to recognize, before they start penalizing all of their citizens and plastic manufacturers. California may want to make the people responsible, but I think the state needs to be responsible by allowing new technology and better options for their residents and local commerce.

Wake up California! The solution is staring you in the face!

 

Waste Wise: Packing It In

Consider biodegradeable plastic packaging. It’s been touted as a good thing: If the material cannot be or is not recycled or re-used then it has the added benefit of degrading naturally once composted or landfilled. It seems product manufacturers, in an effort to be more sustainable, have focused on making plastic containers and packaging as highly degradable as possible, presumably based on the assumption that the more quickly it breaks down the more environmentally friendly it is.

On the surface, this makes sense. The more quickly something breaks down, the more quickly it goes away. But there is a flaw in this logic that suggests a disconnect between the manufacturers and their understanding of what happens to the materials upon disposal.

If biodegradable materials are composted, speedy biodegradation is a good thing, yielding a faster conversion time from waste to soil amendment. The problem is only 8 percent of U.S. municipal solid waste is composted. Of that amount, the vast majority of composted materials are yard trimmings and food waste, not biodegradable packaging materials.

Given this, where do most of the packaging materials go? While most paper packaging is recycled, nearly 85 percent of plastic packaging and containers (including the biodegradable kind) wind up in a landfill (a small percentage goes to waste-to-energy facilities).

So if it goes to a landfill, biodegradability is a good thing, right? Not necessarily. Results from a lifecycle analysis by N.C. State University have found that landfilled biodegradable plastics may not be as good for the environment as originally thought. Recall that when biodegradable plastics degrade in a landfill, microbes breakdown the material, converting it to either carbon dioxide or methane, both of which are greenhouse gases. Yet methane is 25 times more potent as a greenhouse gas compared to carbon dioxide, which means that if the methane generated from a landfill is not captured and utilized, then the biodegradable materials can do more harm than good.

N.C. State researchers Mort Barlaz, Ph.D., and Ph.D. candidate Jim Levis (who is supported via a Francois Fiessinger scholarship from the Environmental Research and Education Foundation) found that because biodegradable plastics were designed to break down as fast as possible, those placed in a landfill degraded too quickly to be sufficiently captured and utilized. This means that although the intent of the manufacturers is noble, the facts surrounding how packaging waste is currently managed and where it goes means that biodegradable packaging can actually be more harmful for the environment. So do we retreat to non-biodegradable plastics? Not likely.

There are two possible solutions. On the disposal side, the N.C. State study suggests that landfill gas collection systems put in place earlier go a long way toward capturing the methane released from rapidly degrading materials such as biodegradable plastics. There are logitistical challenges in applying this to every situation.

A second and perhaps more plausible solution lies further up the supply chain. If the biodegradable materials were designed to degrade more slowly, say on the order of years versus months, then this would ensure that materials ending up in a landfill would generate methane that is sure to be captured and beneficially utilized. Given the amount of plastic that still ends up in a landfill, the larger point is that product manufacturers should take the time to really understand where their materials end up and how this truly impacts sustainability, while at the same time evaluating how policy and human behavior can be modified to shift the scenario to one where the higher recovery of these materials can be achieved.

“Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model” by James Levis and Morton Barlaz has been published in the journal Environmental Science & Technology. More information can also be obtained by visiting www.erefdn.org.

Bryan Staley

Bryan Staley, P.E., is president of the Environmental Research and Education Foundation, a non-profit foundation that funds and directs scientific research and educational initiatives to benefit…

Are We Our Own Worst Enemy in Fighting Plastic Waste?

The “Green” plastics industry can be very puzzling.  When I first came to this industry, I felt great that I could be involved in something that’s good for the world.  Save the world!

But then, one starts to question if the world even wants to be saved – bizarre.  This industry includes bioplastics, composting, recyclers, oxo-degradables, PLA, Biodegradables, brand owners, manufacturers and of course our wonderful legislative leaders – each with differing perspectives and objectives.  I’m fortunate to be involved with a company that provides multiple options, so I don’t have a single horse in this race.  But I’m certainly happy not to be betting on a few of these ponies.

Nevertheless, there is no single technology available that can address all the problems or appease everyone, but there are solutions that do take a very responsible approach to the problem of plastic waste, depending on realistic methods of disposal.  And this is where we run into a problem.

The recyclers do not want anything to contaminate the recycling stream.  Understandable, it’s a viable industry, but the infrastructure is not capable of handling a significant enough percentage of the plastic output.  I strongly support increasing our capacity to recycle. Yet, we have just as much, if not more, ability to harness landfill methane capturing (LFG) for clean, cheap energy. And due to the fact that the majority of this plastic is heading that way (landfill), we need to focus resources on supporting this effort.   We can’t dismiss the greater value for the sake of a fledgling industry, it doesn’t make sense.

California (legislatures), you’re the mother ship for the quagmire that prevents innovation.  California, for some very curious reason, supports solutions that are absolutely incapable of being a viable option for plastic waste.  There are more practical options that address “plastic pollution” without compromising efforts to reuse.  Limiting manufactures to one technology that supports only compost-ability, especially when this is such an inferior option in the big scheme of plastic usage and waste, is mind-boggling and counterproductive.

We have a raging river of plastic being produced every year, over 30 MILLLION TONS, the very large majority of this material is heading to a landfill – it needs to be managed.  Many companies don’t want to get in the game, too much fluid legislation and regulation – shocker.  Many adopt solutions that placate the cause of the day, despite their full knowledge that it is fundamentally flawed.

We need to get our heads out of our proverbial asses and start addressing the bigger problem, the larger percentages.  There are amazing technologies out there, but there is no doubt that we are getting in our own way of making incredible progress.   This is a young and rapidly evolving industry; the progress being made to address the fundamental problem we face is phenomenal.  Instead of hindering ourselves with knee-jerk legislation and bans; perhaps we allow our ingrained ability to rise to the occasion with innovation.  Technologies that have misrepresented their performance should not stand as the be-all to end-all to what we can achieve, it’s premature and shortsighted.

The question we need to ask ourselves is not who will win the race, but what race are we trying to win?

The plastics race is a close one, but PLA shows a clear advantage and recycling continues to drag behind.

The plastics race is a close one, but PLA shows a clear advantage and recycling continues to drag behind.

Consumer Pressure and Legislation Increasing Demand for Biodegradable Plastics by Nearly 15 Percent Annually During 2012 to 2017 in North America, Europe and Asia, Says IHS Study

Europe continues to be largest consuming region for biodegradable polymers, with more than half of global total

“The biodegradable polymers market is still young and very small, but the numbers are off the charts in terms of expected demand growth and potential for these materials in the coming years,”

According to a new IHS Chemical (NYSE: IHS) global market research report, mounting consumer pressure and legislation such as plastic bag bans and global warming initiatives will increase demand for biodegradable polymers (plastics) in North America, Europe and Asia from 269 thousand metric tons (KMT) in 2012 to nearly 525 KMT in 2017, representing an average annual growth rate of nearly 15 percent during the five-year period 2012-2017.

The IHS Chemical CEH Biodegradable Polymers Marketing Research Report focuses on biodegradable polymers, including compostable materials, but not necessarily including all bio-based products. Biodegradable polymers are a part of the larger overall bio-plastics market. Typically, bio-plastics are either bio-based or biodegradable, although some materials are both.

In terms of biodegradable polymer end-uses, it is estimated that the food packaging (including fast-food and beverage containers), dishes and cutlery markets are the largest end-uses and the major growth drivers. In both North America and Europe, these markets account for the largest uses and strong, double-digit growth is expected in the next several years. Foam packaging once dominated the market and continues to represent significant market share for biodegradable polymers, behind food packaging, dishes and cutlery. Compostable bags, as well as single-use carrier plastic bags, follow foam packaging in terms of volume.

“The biodegradable polymers market is still young and very small, but the numbers are off the charts in terms of expected demand growth and potential for these materials in the coming years,” said Michael Malveda, principal analyst of specialty chemicals at IHS Chemical and the report’s lead author. “Food packaging, dishes and cutlery constitute a major market for the product because these materials can be composted with the food waste without sorting, which is a huge benefit to the waste management effort and to reducing food waste and packaging disposal in landfills. Increasing legislation and consumer pressures are also encouraging retailers and manufacturers to seek out these biodegradable products and materials.”

The report also noted that these biodegradable polymers offer expanding uses for biomedical applications. Another developing use for these biodegradable polymers is in the shale gas industry, where they are used during hydro-fracking as more environmentally friendly proppants to ‘prop open’ fractures in rock layers so oil and gas can be released.

In 2012, Europe was the dominant market for biodegradable polymers consuming 147 KMT or about 55 percent of world consumption; North America accounted for 29 percent and Asia approximately 16 percent. Landfill waste disposal and stringent legislation are key market drivers in Europe and include a packaging waste directive to set recovering and recycling targets, a number of plastic bag bans, and other collection and waste disposal laws to avoid landfill.

The most acceptable disposal method for biodegradable polymers is composting. However, composting requires an infrastructure, including collection systems and composting facilities. Composting has been a growing component of most  European countries’ municipal solid waste management strategies for some time, and the continent has an established and growing network of facilities, while the U.S. network of composting facilities is smaller, but expanding.

North American consumption of biodegradable polymers has grown significantly in recent years, according to the IHS report, primarily due to the following factors—biodegradable polymers have become more cost competitive with petroleum-based products, and there has been growing support at the local, state and federal levels for these products (for example, legislation defining biodegradability, and plastic bag bans). In addition, there has been progress in addressing issues relative to solid waste disposal, such as improving composting infrastructure.

Said Malveda, “A couple of main barriers to these biodegradable polymers are price and performance, which will become less significant as processing technologies improve, more applications for their use are developed, and production increases. Regulations such as plastic bag bans are being enacted in many countries, and this stimulates new research investments for alternative materials and new uses.”

In Asia, there has been some growth of biodegradable polymers use due to government and industry promoting their use. This also includes plastic bag bans and global warming initiatives. However, Asian consumption of biodegradable polymers has not increased as much as expected. Current market prices of biodegradable polymers continue to be higher than conventional, petroleum-based resins. However, the Chinese market is expected to grow rapidly due to new capacity and government legislation supporting the environment. Future growth will also depend on price reductions, Malveda said.

In 2012, the two most important commercial, biodegradable polymers were polylactic acid (PLA) and starch-based polymers, accounting for about 47 percent and 41 percent, respectively, of total biodegradable polymers consumption. Starch sources vary worldwide, but include corn, potatoes, cassava and sugar beets. In Europe, starch-based biodegradable polymers are the major type consumed, accounting for 62 percent of the market, due to Europe’s large, starch-based capacity and their use in many applications. This is followed by PLA, with 24 percent and other biodegradable polymer types with 14 percent.

For more information on the IHS Chemical CEH Biodegradable Polymers Marketing Research Report, please contact susan.wright@ihs.com. To speak with Michael Malveda, please contact melissa.manning@ihs.com, or press@ihs.com.

About IHS (www.ihs.com)

IHS (NYSE: IHS) is the leading source of information, insight and analytics in critical areas that shape today’s business landscape. Businesses and governments in more than 165 countries around the globe rely on the comprehensive content, expert independent analysis and flexible delivery methods of IHS to make high-impact decisions and develop strategies with speed and confidence. IHS has been in business since 1959 and became a publicly traded company on the New York Stock Exchange in 2005. Headquartered in Englewood, Colorado, USA, IHS is committed to sustainable, profitable growth and employs more than 6,700 people in 31 countries around the world.

IHS is a registered trademark of IHS Inc. All other company and product names may be trademarks of their respective owners. © 2013 IHS Inc. All rights reserved.

Are you confused about recycling?

Are You Confused About What to Recycle?

When is the last time you asked yourself or someone else if something was recyclable?  It a common question and one that gets many different answers depending on what packaging or material you are asking the question about.

Most recycling programs will have information readily available to the public on what they will accept in the recycle bins.  This list however is quite small and becomes apparent that what recyclers are looking for is the cream of the crop.  If you are anything like me you put everything in the recycle bin and hope that it will motivate recyclers to start taking more material.

People in general want to do the right thing and truthfully speaking it’s a great feeling to know we are doing our part to help recycle when we do make the effort to recycle.  I suppose someday recycling will become a mainstream religion – to a very few it already is.  I often wonder what recycling would look like if people got paid for their recyclable materials?  After all for decades aluminum cans provided a source of additional funds to many and this resulted in very high recycling rates for aluminum cans.  It would sure make it a little more worth the effort to sort through and place materials in the proper bin.

The April 1st, 2013 issue of Plastics News had a great Viewpoint article by Don Loepp which addressed this very issue as a discussion point from the March Plastics Recycling Conference in New Orleans.

http://www.plasticsnews.com/article/20130321/BLOG01/130329974/plastics-recycling-are-you-still-confused#

If we are going to have recycling be a big part of the environmental solution to the growing global plastic pollution issue we are going to have to get aggressive about our recycling efforts and recyclers will need to be a stakeholder in the bigger environmental mission as much as they are with the business focus of recycling.  All materials have the potential to be recycled, let involve state and federal programs to bring innovation to the market so that recyclers can accept all materials and have markets to sell those materials.

We’d love to hear what you think?

Plastics recycling: Are you still confused?

 

Can I Claim Biodegradable or Compostable?

There has been a bit of lingering confusion by some regarding the recent updates to the FTC Green Guidelines about marketing products with the terms “biodegradable” and/or “compostable”.  We hope to clear up any remaining confusion that might be out there in this blog.

We feel that the recently updated FTC Green Guidelines have really cleared up the past confusing and often ambiguous guidelines regarding marketing claims of biodegradable and compostable.  The FTC in their updated green guidelines have provided clear explanations and examples of appropriate marketing claims that would eliminate confusion among “green” type of claims being made in the market today.  Claims such as ‘biodegradable’, ‘compostable’ and even ‘recyclable’ have been addressed in the updated FTC Green Guidelines and should eliminate any and all confusion that lingered from earlier guidelines.

So can a company make the claim of “biodegradable?”

The answer is yes!  There are two ways to do so:

A company can claim biodegradable if that material biodegrades with a one year timeframe within the customary disposal environment.  The company making that claim should have reliable scientific data to back up the one year timeframe for biodegradation within the customary disposal environment.

Or, for products that are biodegradable but take longer than one year to biodegrade, (After all, even food waste takes longer than a year to biodegrade in a landfill environment) the claim must be fully qualified.

What does “fully qualified” mean?

It means that a company must include additional information along with the claim of biodegradable.  That additional information includes the environment and timeframe.

This approach also applies to claims of compostable.  Products that use the general claim of compostable must compost in a backyard compost environment and compost very rapidly.  For products that will not readily compost in typical backyard compost environments, the claims would need to be fully qualified to include the type of compost environment and if needed the timeframe.

There is a caveat to this, and that is that many compostable plastics require an Industrial or Commercial Compost Facility in order to properly compost.  These facilities are not readily available to most of the world and so the availability of placing the compostable product into the proper disposal environment should be included in with the marketing claims.

And what about the claim “recyclable”?

Most polymers are technically but unfortunately are not.  With recyclability claims be sure to use a qualified claim if less than 60% of consumers have access to facilities that recycle your product.

The general idea behind the updated FTC green Guidelines is to minimize or prevent confusion about environmental claims being made about a product and/or the products packaging.  ENSO fully supports this approach and we believe it is crucial that green marketing claims are as accurate and complete as possible so not to result in confusing or misleading claims.

If you would like additional information on this subject please feel free to contact us.

Biodegradable Plastic – Compostable Not So Fast Says Stanford Daily

There was a recent press release issued by Media Juice titled “Biodegradable Plastic – Compostable Not So Fast Says Stanford Daily.”  The press release reviews a study performed by students at Stanford University regarding compostable utensils and their performance in “real world” environments.

The study points out that what the company markets as a compostable PLA material and the “Compostable” certifications that organizations (such as BPI Biodegradable Products Institute) issue on the material is not necessary a reflection of what happens in real world environments.

This brings up a great point and discussion topic and one ENSO has pushed for the past five years and that is that we are mistaken in our approach to promoting, marketing or pushing materials that will go away in any real world environment in a specific timeframe.    Even the much touted and pushed material of PLA is not a rapidly compostable as is promoted in marketing materials.  Sure, we can create test environments which are highly controlled and manipulated that will maximize biodegradation and provide results that look and sound great, but the variety that nature brings in the real world can mean a huge difference in the amount of time needed for a product to biodegrade, from months to even years. This does not change the fact of whether a product is biodegradable, just simply that to dictate exactly when it will biodegrade is a bit misleading to the consumer.

So yes – labs can show specific time frames for biodegradation, but what happens when that same material ends up in real world environments?  9 times out of 10, it doesn’t perform as promised.  So, what does this mean?  How can a material tested and certified by industry organizations such as BPI not perform when introduced into real world natural environments?  After all legislators are passing laws based on such certifications.

We would love to hear your thoughts on the subject.

http://www.sbwire.com/press-releases/biodegradable-plastic-compostable-not-so-fast-says-stanford-daily-225526.htm

http://forkprintproject.wordpress.com/

http://www.news.pitt.edu/news/Landis_polymers_LCA

http://new.ensoplastics.com/theblog/?p=1143

 

Clean Energy

Methane Gasses: Least Expensive Form of Clean Energy?

Did you know that using the methane gasses generated from landfill sites are the least expensive form of clean energy we currently have available to us?  It’s true, our waste when biodegraded anaerobically produce methane which is a flammable gas.  Landfills are packed very tight and therefore do not allow oxygen to be used in the biodegradation process.  This results in anaerobic microbes having an environment which allows them to thrive and break down the organic matter within the landfill cell.  This also happens in Anaerobic Digesters where the by-product of the anaerobic biodegradation process produces the biogas Methane (CH4).

It is true that Methane gas is a potent greenhouse gas.  It is also flammable and dangerous and as such it needs to be collected and converted into gases that are less impacting on the environment and/or to create clean energy.  In the past many landfills would flare, or burn the methane to convert it to CO2 but over the years more and more landfills and businesses are recognizing that methane from landfills and anaerobic digestion can be used to create clean energy.

We are a long way from being a zero waste society and until we are we will have to deal with our waste.  That waste if placed into anaerobic environments can generate methane which has a value that can offset our need for other fossil fuels.

Due to the stringent level of regulations the United States has the highest percentage of landfills with LFG (Landfill Gas) collection systems relative to any other country practicing landfilling.  Nearly 60% of the worldwide capture of methane occurs in the U.S. even though the U.S. only generates 24% of the worldwide methane.  From the perspective of the largest sources of methane emissions, landfills are the third largest.  I provide these numbers to show that globally collecting and converting methane from landfills can provide the incentive to lower GHG (Greenhouse Gas) emissions.   It should be noted that progress in lowering GHG emissions is best achieved by a concerted, integrated approach that employs all available technologies and methods, including reuse, recycling, composting, waste-to-energy, and landfilling with capture of LFG.

So here’s the question:  What if all plastics were both recyclable and biodegradable, and would biodegrade in landfill environments?

If we do the math on the 31 billion plastic water bottles sent to a landfill instead of were recycled in 2006.  It would result in enough energy to power a 100w light bulb for over 900,000 hours.

To calculate how much energy can be created from a plastic bottle enhanced with the ENSO additive take the weight of the bottle multiply it by % carbon, multiply by 1.33 (molecular weight of CH4 16 / molecular weight of carbon 12 – this converts the carbon to methane), then multiply by 22.4 (L/g – ideal gas law).

(bottle wt * bottle carbon %) * (methane mass 16 / carbon mass 12) * 22.4 L/g = vol. methane per bottle

(19.2 gram * 62.5%) * (1.33) * 22.4 = vol. of methane per bottle

(12) * (1.33) * 22.4 = 357.50 L * (1 m3/100 L) = .3575 m3

Once we know the volume of methane per bottle we need to convert that into how much energy can be created per volume of methane. The Thermal energy content of methane is approximately 26.73 – 32.7 kj/m3 therefore about (26.73 + 32.7) / 2 = 29.715 kJ/m3

.3575 m3 * 29.715 kJ/m3 = 10.623 kJ

1kJ/second = 1kW and considering a 100W light bulb:

10.623 kJ = 10.623 kW seconds * (1000 W/1 kW) * (1 hr/3600 s) = 2.95 W hr

To light a 100W light bulb for 1 hour would require 33.88 bottles:

100 W * (1/2.95 W hr) = 33.88

31 billion bottles = 31,000,000,000 bottles * (1 hr/33.88 bottles) = 914,759 hrs

Bacteria Strain

Bacteria Strain that Biodegrades Polyethylene

Most people understand standard plastics to be resistant to the biodegradation process, but did you know that research from back in 2005 isolated a microbial strain called Brevibacillus borstelensis that is capable of utilizing polyethylene as the sole carbon and energy source?

So what does all that mean and how did they do this?

Soil taken from a polyolefin waste disposal site was used to isolate the bacteria strain that had adapted to its environment and energy source to be able to secrete the enzymes needed to utilize the carbon within the polyethylene chemical chain.  From the research there were a few BIG discoveries with one being that Brevibacillus borstelensis was able to use the carbon found in polyethylene as the sole source of energy.  This is important because we typically find that microbes will develop where there are easily accessible sources of energy.  This is the reason traditional plastics take so long to biodegrade, the carbon is too difficult to utilize by microbes resulting in plastics lasting for hundreds of years in the environment.  We now know of a microbe that is indifferent in using the carbon from polyethylene plastic or from other sources.

This research has opened the door to better understanding the adaptive nature of those microscopic creatures we share the planet with.  Although we can’t see them, they outnumber the human inhabitants by a factor of many trillions of them to each one of us.  They have also had millions of years more time on the earth than us humans have, and are instrumental in the cleaning process of creating a healthy viable planet.  There is a lot we can and will continue to learn about the tiniest creatures we call microbes.

To read the full paper: Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2005.02553.x/full

Compostable Products Go Straight To Landfill

In Marin, Many Compostable Materials Go Straight to Landfill

Despite proliferation of biodegradable foodware, those products aren’t being composted at the two waste management facilities in Marin. As a result, people’s choices might not be as eco-friendly as they think.

Greenwood School 8th grader Leyla Spositto and her classmates knew something was amiss just a few weeks into the school year when they saw the trash piling up.

Greenwood administrators had chosen San Ramon, Calif.-based Choicelunch as the school’s new lunch provider largely because nearly all of its packaging was made of compostable materials – from corn-based bio-plastic cups to potato-based “spudware” forks and spoons – and therefore would be diverted from the landfill. The move fit with one of the school’s core values of environmental stewardship.

But when Greenwood environmental science teacher Julie Hanft told the students that so-called bio-plastics weren’t being composted in Marin, Greenwood’s 7th and 8th graders, who handle the school’s trash as part of their after-school chores, were stunned.

“All of the stuff from Choicelunch was going to the trash,” Spositto said. “We were very surprised that a system didn’t exist for the packaging to be composted like it was supposed to be.”

So was Greenwood School Director Debra Lambrecht.

“We were very, very surprised,” Lambrecht said. “And the fact that the children were shocked and appalled? We thought, ‘Well right on.’”

With lots of packaging that could neither be composted nor recycled – bio-plastics can’t be recycled like regular plastic – the students and Hanft arranged to have a large collection of their Choicelunch packaging taken to Recology near Candlestick Park in San Francisco, where bio-plastics are composted. But they quickly realized that having a parent or teacher drive a truck across the Golden Gate Bridge weekly wasn’t exactly a sustainable solution.

Greenwood’s students and school administrators found themselves at the crossroads of an issue that all involved say is riddled with complexities. As a result, many Marin residents who think they’re making eco-friendly decisions – buying only compostable plastic cups for their children’s birthday party, for example – are sending more garbage to the landfill than if they were using recyclable materials.

“That’s the big shame about bio-plastics – people think they’re doing the right thing,” said Jessica Jones, the district manager for Redwood Landfill and Recycling Center in Novato, where most of the trash, recycling and compost from northern and southern Marin is taken.

Jones said Redwood, a subsidiary of Waste Management Inc., doesn’t compost bio-plastics because the compost the company produces is sold to and used on organic farms. If its compost contained any materials that took longer to biodegrade – like corn-based foodware or bio bags, for instance – it could not be certified by the Organic Materials Review Institute, the Eugene, Ore., which provides independent review of products to be used in organic farming.

Jim Iavarone, managing director at Mill Valley Refuse, which sends all of its waste to Redwood, said the inability to compost bio-plastics “has been a continual issue for us” ever since the company rolled out compost service in August 2010.

“The makers of these products and food services (like ChoiceLunch) have hung their hat on that,” Iavarone said. “It’s a good idea that just isn’t delivering as hoped or as advertised.”

Devi Peri, the education coordinator for Marin Sanitary Service, which serves most of Central Marin, including San Rafael, Larspur, Corte Madera, San Anselmo, Fairfax and the Ross Valley and Las Gallinas sanitary districts, says her company is in the same boat as Redwood.

“Not all compostable plastics are created equal and we don’t even have any way to see if it’s a true biodegradable plastic,” she said.

But compostable bio-plastics are accepted by other Bay Area waste companies like Recology, which processes most of its OMRI-certified compost at Jepson Prairie Organics, a facility in Vacaville.

“There is a clear disconnect between how Recology can compost bio-plastics and how we can’t,” Jones said.

The difference, according to OMRO Program Director Lindsay Fernandez-Salvador, is that Recology has an extensive “foreign removal program.” That program, essentially a filtering system, calls for manual removal of any all bio-plastic products not clearly labeled compostable. Under California law, products labeled compostable must meet the Biodegradable Products Institute’s ASTM D6400 standards, which “determine if plastics and products made from plastics will compost satisfactorily, including biodegrading at a rate comparable to known compostable materials.”

“Any compost may become contaminated with compostable plastics, but if the program has a reasonably robust foreign removal program, that satisfies OMRI’s requirements,” Fernandez-Salvador said.

A foreign removal program means that bio-plastics that aren’t labeled clearly or don’t meet the standards either end up in a separate compost stream of only products that will degrade at a slower rate than food scraps or yard waste – or they’re tossed into the landfill.

Peri said there is some industry skepticism about how much bio-plastic material is actually ending up in the compost streams at places like Recology.

“I have a feeling that it might be more (going to the landfill) than people might want to hear,” Peri said. “And maybe more than they are reporting.”

Jack Macy, the Zero Waste Coordinator for the city of San Francisco, acknowledged that some “compostable stuff that is not labeled well ends up in the landfill.”

“But the reason that we accept compostable bags and compostable foodware is that it allows us to capture more of the organics that we’re trying to divert from the landfill,” Macy added. “Every composter would prefer not to take that stuff because of the challenges of identification and the breaking down aspect. It’s easier to say no.”

That’s the choice Redwood has made, which spurred Greenwood’s 7th and 8th graders to take on the issue as a community action project. The students researched other options, spoke with potential vendors and made a presentation to Lambrecht right before the holiday break. The school intends to move to a completely independent lunch system next year, with an in-house chef making lunches dispensed with reusable plates and utensils. The move is one that only schools as small as Greenwood, with just 127 students, can afford to make.

In the meantime, Greenwood administrators have decided to dump Choicelunch and explore alternative options for the rest of this year.

“It is very disappointing,” said Karen Heller, the director of business development for Choicelunch, whose company supplies lunches for more than a dozen schools in Marin, including the Mill Valley and Ross Valley school districts. “But it hinges on the waste management company. Our hands are kind of tied.”

For two days a week, the school’s 8th graders will be selling lunch from Grilly’s and Tamalpie Pizzeria (one day apiece) to raise money for their 10-day spring trip. Lambrecht hopes to have a new deal in place in the coming days for the other days.

“We’ve really felt like we’ve accomplished something,” Spositto said of the student’s campaign. “We’re glad we had the authority to make this happen.”