Category Archives: Environmental News

ENSO Plastics Announces Biodegradable Plastic Solutions for the Philippines

MAKATI, Philippines–(BUSINESS WIRE)–The grace period for Makati City Ordinance No. 2003-095 has ended. This ordinance bans the use, sale and distribution of plastics that are non-biodegradable. To help manufacturers comply with the city ordinance ENSO Plastics announces two new biodegradable technologies for the Philippines market – ENSO RENEW™ and ENSO RESTORE™.

ENSO RENEW™ is a unique Renewable Thermo Polymer (RTP) derived from the waste process of agriculture, with a carbon footprint 75% lower than polyethylene. It is a high heat renewable biopolymer that provides home and industrial compostability as well as being marine degradable. ENSO RENEW™ is designed to meet the needs of applications looking for renewable solutions to meet new legislative requirements utilizing fast growing plant based material and rapid biodegradation. Manufacturers are also able to blend ENSO RENEW™ with traditional plastics for partially renewable solutions that are durable.

ENSO RESTORE™ is the latest development of biodegradable additives offering superior improvements to biodegradable performance and process-ability/compatibility and eliminating the historical higher scrap rates of competing additives, creating a huge environmental and cost advantage. ENSO RESTORE™ is a leading edge technology that accelerates the natural biodegradation without any disruption to disposal method or performance. ENSO RESTORE™ biodegradable additives work with light weighted packaging, thin film applications, and heavier injection molded parts in all major resin types: PE, PP, PET, PS, Rubber, Nitrile, polyurethane and more.

ENSO Plastics solutions are quick to implement with minimal or no change in current manufacturing. It’s quick and easy to integrate biodegradable technologies that comply with the recently implemented laws without difficulty or expense.

About ENSO Plastics™

ENSO Plastics, LLC is an environmental plastics solutions company with proprietary biodegradable and biobased solutions, bringing to market cost competitive cutting-edge solutions to meet the market demands of sustainability, home or industrial compostability, landfill biodegradability, marine degradability and recyclability.

ENSO Plastics’ mission is to solve the global plastics pollution issue by bringing the best technologies to market, finding solutions with the greatest and most productive impact for the plastics industry and providing answers that can be trusted to integrate seamlessly – a platform that companies can stand behind with confidence.

If you are interested in learning more about ENSO Plastics technologies, please visit us at https://ensoplastics.com or call +00-1-602-639-4228.
Contacts

ENSO Plastics
Paul Wightman, +00-1-602-639-4228
https://ensoplastics.com

http://www.businesswire.com/news/home/20130620006486/en

Important California Notice
California law prohibits the sale of plastic packaging and plastic products that are labeled with the terms ‘biodegradable,’ ‘degradable,’ or ‘decomposable,’ or any form of those terms, or that imply in any way that the item will break down, biodegrade or decompose in a landfill or other environment. These restrictions apply to all sales in or into the State of California, including such sales over the Internet.

Newly Developed Plastic Reduces Carbon Footprint 75%

Mesa, AZ — (SBWIRE) — 06/13/2013 — ENSO Plastics™ announces their latest product; demonstrating their continued commitment to innovation and the environment with the release of ENSO RENEW™ RTP. ENSO RENEW™ RTP is a revolutionary plastic that puts the environment first with a significant reduction in carbon footprint, rapid biodegradability and the utilization of agricultural waste rather than petroleum or fossil fuels.

ENSO RENEW™ RTP provides a huge reduction in overall carbon footprint. A product’s carbon footprint is a critical factor when determining the impact on the environment. ENSO RENEW™ RTP boasts a carbon footprint over 50% less than PLA (one of the most common bio-plastics) and over 75% lower than HDPE (the plastic used to make film, milk jugs and many other items). ENSO RENEW™ RTP is made from agricultural waste that is manufactured very close to the source keeping the carbon footprint minimal. While most companies work to reduce their carbon footprint by fractions of a percent, ENSO RENEW RTP opens a whole new realm of possibilities.

ENSO RENEW™ RTP offers a unique end-of-life advantage for disposal not requiring specialized industrial composting facilities to breakdown, as ENSO RENEW™ RTP biodegrades rapidly in most natural soil and marine environments. ENSO RENEW™ RTP passes the ASTM D6400 standard for industrial composting, as well as marine degradability and home composting in as little as 10 days. Additionally, ENSO RENEW™ RTP is natural, and if accidentally consumed by wildlife will not cause harm.

ENSO RENEW™ RTP can be used as a stand-alone resin or blended with polyethylene or polypropylene. ENSO RENEW™ RTP is made from agricultural waste allowing manufacturers to take advantage of “bio-preferred” programs whether used as a stand-alone or blended.

ENSO RENEW™ RTP resin blends well with many types of PE, as well as PP, and shows good versatility in many applications; such as films, blow molded parts, and heavier injection molded parts. ENSO is currently working with leading companies in agriculture, consumer goods and other high profile applications, who recognize the unique opportunity to use plastic that is sourced sustainably, used effectively, and disposed of in a way that adds value to the ecosystem.

Between the environmental damage caused by long lasting traditional plastics and the need for alternative solutions, ENSO RENEW™ RTP will change the face of the industry and the environment. Contact an ENSO Plastics Business Development Representative today to learn more about how your company and brand can now use plastics that are more environmentally responsible.

About ENSO Plastics™
ENSO Plastics™, LLC is an environmental plastics solutions company with proprietary biodegradable and biobased solutions, bringing to market cost competitive cutting-edge solutions to meet the market demands of sustainability, home or industrial compostability, landfill biodegradability, marine degradability and recyclability.

ENSO Plastics™ has a mission to solve the global plastics pollution issue by bringing the best technologies to market, finding solutions with the greatest and most productive impact for the plastics industry and providing answers that can be trusted to integrate seamlessly – a platform that companies can stand behind with confidence.

Learn more about ENSO™ technologies visit us at https://ensoplastics.com or call U.S. (866) 936-3676 , international 001 602 639-4228 .

The Truth Shall Set You Free

We produce well over 200 billion pounds of plastic each year.  This is a well-documented environmental issue of grim proportions; plastic is literally trashing our planet.  Brands, manufactures and consumers are fully aware and the search for solutions is in full swing.  Fortunately, our awareness has spurred incredible technological advances to address this problem, some better than others.

As a brand, being environmentally accountable is a trait that serves well in the marketplace.  It’s a hallmark that projects the greater good.  But in a Cass Sunstein meets George Orwell world,  where the FTC, EPA, FDA, IRS, (insert acronym),  are watching your every move and new terms such as Extended Producer Responsibility emerge, it can be paralyzing to make that technological decision.  You want to choose something that is justifiable, reliable and proven.

In a small microcosm of the larger issue, we catch a glimpse of the efforts and problems we face.  In a recent article Coffee Makers wrestling with recyclability of single-serve pods,  TerraCycle is boasting about recovering 25 million coffee capsules over the last couple years, but has essentially found no use for them.  Are we to understand that companies are paying TerraCycle to collect and store these things in some warehouse?  Add to this, according to the article, 41 million adults drink a coffee made in a single-cup brewer every day.  So in a two year effort, TerraCycle could not recover a single days’ worth of coffee capsules?  Clearly, the Customary Disposal Method for this application is the garbage, in other words, the Landfill.   Let’s not jump on a bandwagon for the sake of waiving a green flag, the overall effect is useless.

Here’s one, California is now floating a new Bill to put the burden on companies to find solutions for plastic waste in our waterways.  The same State that bans the claim of biodegradable materials (and has sued companies legitimately making those claims), is now requiring brands and manufacturers to seek out and implement biodegradable solutions?? Are they expecting producers to put their necks on the line in search for innovation? Good luck taking that bait!

Unfortunately, the principle concern of environmental safety is being contaminated with agendas that have not proven capable of long term sustainability.  There is a tendency to gravitate towards colorful Green language instead of clear, black and white solutions.  Today, we have the capability to address plastic pollution on an incredible scale, without contamination.  Unfortunately, too many producers are paralyzed with uncertainty or are turning to the least point of resistance.

A perfect example is the less than bold stand that one of the largest producers of bottled water took, “Lightweighting”.  Holy crap! That’s it?  Reduce your costs and provide a rigid bag for a bottle?  C’mon…the “commitment to minimizing the environmental impact” is lackluster., considering 50 billion plastic water bottles end up in U.S. landfills each year.

Here’s my humble opinion.  Within a generation, we have witnessed the birth of the plastic EVERYTHING.  We began filling-up our Landfills with EVERYTHING and noticed NOTHING was reprocessing back into nature.   The raging river of plastic is pouring onto our planet and we place the majority of this material in Landfills.   There is a biodegradation process in Landfills that is beaming with potential and we have the proven ability to produce, capture and harness one of the most inexpensive and cleanest energy resources and fundamentally address our plastic pollution problem.

Recycling is an industry I support, but the numbers don’t lie and the goal is not to prop-up one particular industry, it’s to clean our planet.  We need to stop kidding ourselves and start dealing with reality.  I also understand Sourcing from renewable resources, but harvesting Corn for plastic in order to claim “Compostable” is absolutely wrong.  I’ve lived in many places over the years and I have yet to find my local Industrial Composting facility.  But if I did, I would respectfully not bring them my plastic waste.  Let’s face it, you can claim it, but it’s not going there and where it is going, this technology does nothing.   For those adding metal into the equation, this technology is borderline criminal.  That probably explains the parasitic tendencies of this technology in underdeveloped countries.  Both of these technologies have an adverse effect on our Food Source/Supply, which alone is highly irresponsible.

When making the decision on how to be accountable for your Plastic Footprint, know what is out there, get the full story and get the proof that it performs as claimed.  If you stand in the light of truth, you will be safe.  70% is greater than 30%, 2+2=4, what’s right is right.

ENSO RESTORE

ENSO Plastics Drives Innovation to Address Plastic Pollution

ENSO Plastics announces solutions to make plastics more responsible, giving brands more environmental possibilities for plastic packaging.

Mesa, AZ — (SBWIRE) — 05/07/2013 — In the ongoing pursuit to address the growing global plastic pollution issue, environmental plastic solution provider ENSO Plastics announces two new technologies ENSO RENEW™ and ENSO RESTORE™ that have change the way plastics are used around the globe.

ENSO RENEW™ is a unique Renewable Thermo Polymer (RTP) derived from the waste process of agriculture, with a carbon footprint 75% lower than polyethylene. It is a high heat renewable biopolymer that results in home and industrial compostable as well as marine degradable plastics. ENSO RENEW™ is designed to meet the needs of applications looking for renewable solutions to further sustainability goals utilizing fast growing plant based material. Blending ENSO RENEW™ with traditional plastics combines bio-based content with the durability of traditional plastics making them ideal for partially renewable solutions that are durable.

ENSO RESTORE™ is the latest development of biodegradable additives offering superior improvements to biodegradable performance and process-ability/compatibility and eliminating the historical higher scrap rates of competing biodegradable additives, creating a huge environmental and cost advantage. ENSO RESTORE™ is a leading edge technology that accelerates the natural biodegradation without any disruption to disposal method or performance. ENSO RESTORE™ biodegradable additives work with light weighted packaging and thin film applications as well as all major resin types: PE, PP, PET, PS, Rubber, Nitrile, polyurethane and more.

While other companies are simply pursuing the best way to sell first generation products and solutions, ENSO™ is driving innovations by actively creating new solutions for our future generations and effectively dealing with plastic waste.

About ENSO Plastics
ENSO Plastics, LLC is an environmental plastics solutions company with proprietary biodegradable and biobased solutions, bringing to market cost competitive cutting-edge solutions to meet the market demands of sustainability, home or industrial compostability, landfill biodegradability, marine degradability and recyclability.

ENSO Plastics has a mission to solve the global plastics pollution issue by bringing the best technologies to market, finding solutions with the greatest and most productive impact for the plastics industry and providing answers that can be trusted to integrate seamlessly – a platform that companies can stand behind with confidence.

If you are interested in learning more about ENSO Plastics technologies, please visit us at https://ensoplastics.com or call (866) 936-3676 / (602) 639-4228.

 
Important California Notice
California law prohibits the sale of plastic packaging and plastic products that are labeled with the terms ‘biodegradable,’ ‘degradable,’ or ‘decomposable,’ or any form of those terms, or that imply in any way that the item will break down, biodegrade or decompose in a landfill or other environment. These restrictions apply to all sales in or into the State of California, including such sales over the Internet.

Waste Wise: Packing It In

Consider biodegradeable plastic packaging. It’s been touted as a good thing: If the material cannot be or is not recycled or re-used then it has the added benefit of degrading naturally once composted or landfilled. It seems product manufacturers, in an effort to be more sustainable, have focused on making plastic containers and packaging as highly degradable as possible, presumably based on the assumption that the more quickly it breaks down the more environmentally friendly it is.

On the surface, this makes sense. The more quickly something breaks down, the more quickly it goes away. But there is a flaw in this logic that suggests a disconnect between the manufacturers and their understanding of what happens to the materials upon disposal.

If biodegradable materials are composted, speedy biodegradation is a good thing, yielding a faster conversion time from waste to soil amendment. The problem is only 8 percent of U.S. municipal solid waste is composted. Of that amount, the vast majority of composted materials are yard trimmings and food waste, not biodegradable packaging materials.

Given this, where do most of the packaging materials go? While most paper packaging is recycled, nearly 85 percent of plastic packaging and containers (including the biodegradable kind) wind up in a landfill (a small percentage goes to waste-to-energy facilities).

So if it goes to a landfill, biodegradability is a good thing, right? Not necessarily. Results from a lifecycle analysis by N.C. State University have found that landfilled biodegradable plastics may not be as good for the environment as originally thought. Recall that when biodegradable plastics degrade in a landfill, microbes breakdown the material, converting it to either carbon dioxide or methane, both of which are greenhouse gases. Yet methane is 25 times more potent as a greenhouse gas compared to carbon dioxide, which means that if the methane generated from a landfill is not captured and utilized, then the biodegradable materials can do more harm than good.

N.C. State researchers Mort Barlaz, Ph.D., and Ph.D. candidate Jim Levis (who is supported via a Francois Fiessinger scholarship from the Environmental Research and Education Foundation) found that because biodegradable plastics were designed to break down as fast as possible, those placed in a landfill degraded too quickly to be sufficiently captured and utilized. This means that although the intent of the manufacturers is noble, the facts surrounding how packaging waste is currently managed and where it goes means that biodegradable packaging can actually be more harmful for the environment. So do we retreat to non-biodegradable plastics? Not likely.

There are two possible solutions. On the disposal side, the N.C. State study suggests that landfill gas collection systems put in place earlier go a long way toward capturing the methane released from rapidly degrading materials such as biodegradable plastics. There are logitistical challenges in applying this to every situation.

A second and perhaps more plausible solution lies further up the supply chain. If the biodegradable materials were designed to degrade more slowly, say on the order of years versus months, then this would ensure that materials ending up in a landfill would generate methane that is sure to be captured and beneficially utilized. Given the amount of plastic that still ends up in a landfill, the larger point is that product manufacturers should take the time to really understand where their materials end up and how this truly impacts sustainability, while at the same time evaluating how policy and human behavior can be modified to shift the scenario to one where the higher recovery of these materials can be achieved.

“Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model” by James Levis and Morton Barlaz has been published in the journal Environmental Science & Technology. More information can also be obtained by visiting www.erefdn.org.

Bryan Staley

Bryan Staley, P.E., is president of the Environmental Research and Education Foundation, a non-profit foundation that funds and directs scientific research and educational initiatives to benefit…

Consumer Pressure and Legislation Increasing Demand for Biodegradable Plastics by Nearly 15 Percent Annually During 2012 to 2017 in North America, Europe and Asia, Says IHS Study

Europe continues to be largest consuming region for biodegradable polymers, with more than half of global total

“The biodegradable polymers market is still young and very small, but the numbers are off the charts in terms of expected demand growth and potential for these materials in the coming years,”

According to a new IHS Chemical (NYSE: IHS) global market research report, mounting consumer pressure and legislation such as plastic bag bans and global warming initiatives will increase demand for biodegradable polymers (plastics) in North America, Europe and Asia from 269 thousand metric tons (KMT) in 2012 to nearly 525 KMT in 2017, representing an average annual growth rate of nearly 15 percent during the five-year period 2012-2017.

The IHS Chemical CEH Biodegradable Polymers Marketing Research Report focuses on biodegradable polymers, including compostable materials, but not necessarily including all bio-based products. Biodegradable polymers are a part of the larger overall bio-plastics market. Typically, bio-plastics are either bio-based or biodegradable, although some materials are both.

In terms of biodegradable polymer end-uses, it is estimated that the food packaging (including fast-food and beverage containers), dishes and cutlery markets are the largest end-uses and the major growth drivers. In both North America and Europe, these markets account for the largest uses and strong, double-digit growth is expected in the next several years. Foam packaging once dominated the market and continues to represent significant market share for biodegradable polymers, behind food packaging, dishes and cutlery. Compostable bags, as well as single-use carrier plastic bags, follow foam packaging in terms of volume.

“The biodegradable polymers market is still young and very small, but the numbers are off the charts in terms of expected demand growth and potential for these materials in the coming years,” said Michael Malveda, principal analyst of specialty chemicals at IHS Chemical and the report’s lead author. “Food packaging, dishes and cutlery constitute a major market for the product because these materials can be composted with the food waste without sorting, which is a huge benefit to the waste management effort and to reducing food waste and packaging disposal in landfills. Increasing legislation and consumer pressures are also encouraging retailers and manufacturers to seek out these biodegradable products and materials.”

The report also noted that these biodegradable polymers offer expanding uses for biomedical applications. Another developing use for these biodegradable polymers is in the shale gas industry, where they are used during hydro-fracking as more environmentally friendly proppants to ‘prop open’ fractures in rock layers so oil and gas can be released.

In 2012, Europe was the dominant market for biodegradable polymers consuming 147 KMT or about 55 percent of world consumption; North America accounted for 29 percent and Asia approximately 16 percent. Landfill waste disposal and stringent legislation are key market drivers in Europe and include a packaging waste directive to set recovering and recycling targets, a number of plastic bag bans, and other collection and waste disposal laws to avoid landfill.

The most acceptable disposal method for biodegradable polymers is composting. However, composting requires an infrastructure, including collection systems and composting facilities. Composting has been a growing component of most  European countries’ municipal solid waste management strategies for some time, and the continent has an established and growing network of facilities, while the U.S. network of composting facilities is smaller, but expanding.

North American consumption of biodegradable polymers has grown significantly in recent years, according to the IHS report, primarily due to the following factors—biodegradable polymers have become more cost competitive with petroleum-based products, and there has been growing support at the local, state and federal levels for these products (for example, legislation defining biodegradability, and plastic bag bans). In addition, there has been progress in addressing issues relative to solid waste disposal, such as improving composting infrastructure.

Said Malveda, “A couple of main barriers to these biodegradable polymers are price and performance, which will become less significant as processing technologies improve, more applications for their use are developed, and production increases. Regulations such as plastic bag bans are being enacted in many countries, and this stimulates new research investments for alternative materials and new uses.”

In Asia, there has been some growth of biodegradable polymers use due to government and industry promoting their use. This also includes plastic bag bans and global warming initiatives. However, Asian consumption of biodegradable polymers has not increased as much as expected. Current market prices of biodegradable polymers continue to be higher than conventional, petroleum-based resins. However, the Chinese market is expected to grow rapidly due to new capacity and government legislation supporting the environment. Future growth will also depend on price reductions, Malveda said.

In 2012, the two most important commercial, biodegradable polymers were polylactic acid (PLA) and starch-based polymers, accounting for about 47 percent and 41 percent, respectively, of total biodegradable polymers consumption. Starch sources vary worldwide, but include corn, potatoes, cassava and sugar beets. In Europe, starch-based biodegradable polymers are the major type consumed, accounting for 62 percent of the market, due to Europe’s large, starch-based capacity and their use in many applications. This is followed by PLA, with 24 percent and other biodegradable polymer types with 14 percent.

For more information on the IHS Chemical CEH Biodegradable Polymers Marketing Research Report, please contact susan.wright@ihs.com. To speak with Michael Malveda, please contact melissa.manning@ihs.com, or press@ihs.com.

About IHS (www.ihs.com)

IHS (NYSE: IHS) is the leading source of information, insight and analytics in critical areas that shape today’s business landscape. Businesses and governments in more than 165 countries around the globe rely on the comprehensive content, expert independent analysis and flexible delivery methods of IHS to make high-impact decisions and develop strategies with speed and confidence. IHS has been in business since 1959 and became a publicly traded company on the New York Stock Exchange in 2005. Headquartered in Englewood, Colorado, USA, IHS is committed to sustainable, profitable growth and employs more than 6,700 people in 31 countries around the world.

IHS is a registered trademark of IHS Inc. All other company and product names may be trademarks of their respective owners. © 2013 IHS Inc. All rights reserved.

New York City expands recycling program to include all rigid plastics

New York City residents can now place all rigid plastics in their recycling bins.

Mayor Michael Bloomberg announced the expansion of the city’s recycling program at a news conference Wednesday.

“Starting today, if it’s a rigid plastic – any rigid plastic – recycle it,” said Bloomberg. “There’s no more worrying about the confusing numbers on the bottom. It doesn’t matter it anymore. If it’s rigid plastic recycle it.”

By expanding the city’s recycling program to include rigid, Nos. 3-7 plastics, 50,000 tons of material that had been going to landfills will be recycled, the mayor said.

“It will save taxpayers almost $600,000 in export costs each year,” he added.

The program expansion starts immediately. Residents are being asked to rinse their plastics before putting them into the bin.

The city has partnered with Sims Municipal Recycling on the expansion. Sims will process the plastics that previously could not be recycled, and later this year Sims plans to open a recycling facility in Brooklyn, the city said.

“With the expansion of plastics recycling we are making the New York City curbside program as inclusive as any in the nation,” Robert Kelman, president of Sims North America Metals, said in a statement. “This is exactly the type of advance that was envisioned when we entered into this long term collaboration with the city and we remain hopeful that increasing the types of plastics recycled will lead to higher recycling rates for metal, paper and other recyclables.”

Not included in the city’s new recycling program are single use plastic bags, plastic film and polystyrene foam.

The expansion is part of a wider New York City recycling initiative to double the city’s recycling rate – now about 15% — by 2017.

Read the full article at Waste & Recycling news;

http://wasterecyclingnews.com/article/20130424/NEWS02/130429965/new-york-city-expands-recycling-program-to-include-all-rigid-plastics

 

Plastic Recycling: Green or “GREEN”?

 

Recycling is all about the environment, conserving our resources and greening our planet.

Isn’t it?

With the recent onslaught of laws angled at restricting the types of materials allowed to be recycled, one could start to wonder. After all, technically all these materials can be recycled. Are they implying that we should not encourage recyclers to find outlets for new materials? As companies are pushing for new materials that are more sensitive to our fragile environment, recyclers are pushing for laws that prevent recycling these materials, because they want to “protect” their profits and use of traditional plastics?

Are you kidding me?

Sounds a bit more like the green they are pursuing is the money in someones pocket. Even NC Representative Brawley’s site positions “These companies are developing new and innovative technologies to recycle plastic, including the development of new types of degradable and biodegradable plastic materials designed to decompose in landfills or when they are exposed to soil, water, and other natural elements over time. This has great benefits for our environment.” and then at the same time, acknowledges that despite the environmental benefits, we should protect petroleum based plastic recycling. I hear dollar signs  $$$..

I may be out in left field, but wouldn’t it make sense to send all materials that have the potential to be recycled to the recyclers and encourage them to find new and innovative ways to recycle those materials? Why are we OK with only recycling a few select materials?

With the latest reports on recycling rates in the US, it definitely seems our recycling infrastructure has a terminal illness; traditional medicines are not working to solve this illness. PET bottle collection rates are stagnant, HDPE recycling rates have dropped and there is no plan in sight to fix this. Even NAPCOR recognized this in their recent statement “without additional collection efforts or NEW STREAMS OF MATERIALS, the increased capacity will only serve to drive prices to unsustainable levels” and from Scott Saunders of KW Plastics Recycling “unfortunately, the recycling rate is going to stay where it is unless some NEW IDEA pushes recyclers forward.”

How about this NEW IDEA to provide NEW STREAMS OF MATERIAL:

Let’s place all clean materials (paper, plastic, metal, wood) in our blue bin and use the subsidies paid to recyclers to find out how to effectively recycle. and if that seems too radical check out this new idea that is already 5 times more effective than recycling: 35% success rate for waste management

I find myself placing plastics and other recyclable material that are not “on the recyclable list” in my blue bin in hopes that my little bit of rebellion will encourage recyclers to find ways to utilize these materials.   I’d love to hear your thoughts and ideas on this subject.

Oceanic gyres

Destination: Garbage Island

I’ve heard stories over the years about “islands”, out in the middle of the oceans, which are created completely from discarded plastic. It’s hard to believe that such a place would exist. I recently watched the documentary, “Garbage Island”, by Vice. This documentary proved there is no such island, at least not in the terms of plastic patches so thick you could walk on them.

What is actually out there; 1,000 miles from any landmass, is much worse than a simple growing patch of used up plastic. There are vortexes, holding in tons of broken down plastic particles from the plastic that doesn’t sink (LDPE, HDPE). This plastic floats along the currents of the ocean, breaking down year after year from the sun and the salt water, ultimately finding its home in and around the slower currents of the gyres.

It would be relatively easy to scoop up all the large items of trash and clean up our oceans, but the small, usually microscopic, size pieces of plastic particles would be nearly impossible to clean up.  All marine life has to live in an environment that is ultimately becoming toxic. They ingest the plastic particles and, in turn, we ingest the seafood.

How do we limit the amount of plastic that is ending up in our oceans? This isn’t a problem only confined to the United States, this is a worldwide problem. It’s not enough to just know where our plastic products are ending up, i.e. being recycled, landfill, etc. We should also be more aware of what types of plastics are being used and how their end of life is affecting our environment.

ENSO Plastics Restore is leading edge technology that gives plastic material biodegradability in landfills; and ENSO’s Renew resin will make plastic marine degradable. This is a solution that can solve the plastic pollution problem in our oceans. A solution that needs to addressed; because once the plastic is out of our hands, it’s up to nature to take care of the rest.

 

 

 

 

Can I Claim Biodegradable or Compostable?

There has been a bit of lingering confusion by some regarding the recent updates to the FTC Green Guidelines about marketing products with the terms “biodegradable” and/or “compostable”.  We hope to clear up any remaining confusion that might be out there in this blog.

We feel that the recently updated FTC Green Guidelines have really cleared up the past confusing and often ambiguous guidelines regarding marketing claims of biodegradable and compostable.  The FTC in their updated green guidelines have provided clear explanations and examples of appropriate marketing claims that would eliminate confusion among “green” type of claims being made in the market today.  Claims such as ‘biodegradable’, ‘compostable’ and even ‘recyclable’ have been addressed in the updated FTC Green Guidelines and should eliminate any and all confusion that lingered from earlier guidelines.

So can a company make the claim of “biodegradable?”

The answer is yes!  There are two ways to do so:

A company can claim biodegradable if that material biodegrades with a one year timeframe within the customary disposal environment.  The company making that claim should have reliable scientific data to back up the one year timeframe for biodegradation within the customary disposal environment.

Or, for products that are biodegradable but take longer than one year to biodegrade, (After all, even food waste takes longer than a year to biodegrade in a landfill environment) the claim must be fully qualified.

What does “fully qualified” mean?

It means that a company must include additional information along with the claim of biodegradable.  That additional information includes the environment and timeframe.

This approach also applies to claims of compostable.  Products that use the general claim of compostable must compost in a backyard compost environment and compost very rapidly.  For products that will not readily compost in typical backyard compost environments, the claims would need to be fully qualified to include the type of compost environment and if needed the timeframe.

There is a caveat to this, and that is that many compostable plastics require an Industrial or Commercial Compost Facility in order to properly compost.  These facilities are not readily available to most of the world and so the availability of placing the compostable product into the proper disposal environment should be included in with the marketing claims.

And what about the claim “recyclable”?

Most polymers are technically but unfortunately are not.  With recyclability claims be sure to use a qualified claim if less than 60% of consumers have access to facilities that recycle your product.

The general idea behind the updated FTC green Guidelines is to minimize or prevent confusion about environmental claims being made about a product and/or the products packaging.  ENSO fully supports this approach and we believe it is crucial that green marketing claims are as accurate and complete as possible so not to result in confusing or misleading claims.

If you would like additional information on this subject please feel free to contact us.