Tag Archives: biodegradable plastic

The Plastic Monster will be taking over PACK EXPO

ENSO Plastics is bringing the Heat to PACK EXPO this year

It’s no secret that ENSO Plastics’ biodegradable plastic technology brings the most desirable premium feature to any plastic product on the market wanting to go green. Interested? Intrigued? If you are attending PACK EXPO in Vegas get excited, because ENSO Plastics will be there and making noise in a way that you have not seen before. ENSO is bring the Plastic monster to PACK EXPO!

If you haven’t heard of PACK EXPO you’re missing out because PACK is North America’s largest packaging and processing show. With the opportunity to see 1600 world class suppliers, explore cutting edge technologies for all vertical markets , and discover a brand new array of products, why would you miss out on expanding your network and broadening your packaging knowledge?!

PACK EXPO 2011 | September 26–28, 2011
Las Vegas Convention Center | Las Vegas, Nevada, USA
http://www.packexpo.com/pelv2011/public/enter.aspx

Whether you are just attending, sporting a booth, or if we have intrigued you enough to make last minute plans to attend, I hope to see you in Vegas! Please do not hesitate to contact me if you would like me to visit your booth or would like to personally meet and engage an ENSO Business Development professional.

Cheese Plastic…No, We are Serious.

Well this is new, I have heard of corn plastics…but now Cheese plastics? This is quite interesting, if they are using products that would be waste I find that  quite resourceful. Please let me know what you think about this new technology! At ENSO were all about innovative technology that will make a difference and is good for the earth.
cheese

Is Cheese the Next Sustainable Packaging Solution?

http://icommittogreen.net/reduce/is-cheese-the-next-sustainable-packaging-solution/

Cheese makes a tasty addition to any meal, but did you ever guess it could be used for packaging?

Researchers say that a biodegradable plastic made from cheese byproducts could reduce the need for synthetic packaging and keep useful materials out of the landfill.

The bioplastic made from whey protein is the result of the three-year WheyLayer project, a European Commission-funded research and development project in Spain’s Catalonia region that aims to solve a common packaging woe.

In the food industry, oxidation of oils, fats and other components can lead to unpleasant colors and flavors. So, keeping oxygen out of packaged food is essential.

SEE: 5 Absurdly Over-Packaged Foods

Plastics like PE (polyethylene) and PP (polypropylene) are excellent moisture-blockers, but to keep out oxygen, they must be coated with expensive synthetic polymers.

Most of these polymers – such as EVOH (ethylene vinyl alcohol polymer) and PVDC (polyvinylidene chloride polymer) – are petroleum-based and extremely difficult to reuse, as it is almost impossible to separate each layer for individual recycling.

Whey, the milk protein byproduct of cheese production, provides similar oxygen-blocking properties, but it’s much cheaper and more environmentally friendly.

The new packaging – developed by Barcelona-based research company IRIS – replaces synthetics with whey protein-coated plastic fibers, which could save loads of money and make packaging more readily recyclable.

After packaging is used, whey protein can be chemically or enzymatically removed, and underlying plastic can be easily recycled or reused to make new packaging.

RECYCLING MYSTERY: Bioplastics

In addition to saving money and raw materials, the new application could also keep millions of tons of whey out of European landfills. Each year, European cheese factories produce 50 million tons of whey. Some of it is reused as food additives, but almost 40 percent is thrown away.

Discarded whey collected from cheese producers can be filtered and dried to extract the pure whey protein, which can be used in several thin layers to create a plastic film for use in food packaging.

While the packaging is subject to patent applications, researchers expect it to appear in consumer products within a year. The bioplastic is expected to be used for cosmetics packaging first, and food packaging applications will follow.

The technology will likely be used in the European market at first. But many companies from around the globe showed interest in the packaging when researchers took it to the Interpack international trade fair for packaging and processes back in May.

PET bottles Sink or Swim?

Read the below article and it got me thinking. What’s interesting is that PET (what bottles are made of) does not float…even if it fragments. The plastics that are swishing around in the Garbage patch are not PET bottles and a lot of people do not realize that. I definitely do not think that just because bottles, or PET sink, that that is not pollution because its still there. But there are SO many other products out there…medicine bottles, laundry bins, storage containers, scissor handles,trash cans,caps, product packaging, etc. why is always the “bottles” that get pointed out? I think its important for people to make changes in their habits/lifestyles to better the earth…but until companies make the decision to do so as well, a lot of us will find it almost impossible to avoid all of the plastic that we accumulate. We need solutions, that will work…no green washing…so companies and consumers can make the right decisions about the earth friendly products they will implement in their lives.

 

 

 

Plastic: It’s what’s for dinner

Posted by on August 19, 2011

Conservation of mass often applies to college-level physics problems: in a closed system, mass can neither be created nor destroyed. In the case of the Great Pacific Garbage Patch – a gigantic section of the ocean littered with an unusually high amount of man-made trash — the system is clearly not closed. Yet conservation of mass is almost precisely what we see, both in the Pacific and Atlantic Oceans: more than 20 years of waste plastic studies in these oceans have demonstrated that the garbage patches are neither growing in size nor shrinking. They have conserved their mass. While plastic production rates have skyrocketed, as well as human consumption of plastic-contained goods, the plastic masses in these oceanic gyres (very large circular current patterns spanning thousands of miles) are incontrovertibly the same now as they were in the 1980s.

 

Interesting. If the rate at which plastic enters the patch has increased while the total mass of the patch has remained constant, then there must have been a corresponding increase in the rate at which plastic leaves the patch, to balance. Some scientists have hypothesized that the depths of the oceans act as plastic “sinks” from which waste never returns. If this were true, huge collections of settled ocean plastic debris should be established across the world. But for all their efforts, scientists have not been able to locate such sinks. With no evidence to support the ocean sink hypothesis, researchers have been looking for alternative answers for decades. What they have recently found may surprise you.

In a recent article appearing in Nature News, marine chemist Tracy Mincer and colleagues at the Woods Hole Oceanographic Institution (WHOI) reported the observation of oceanic bacteria actively consuming bits of plastic recovered from ocean gyres. At a glance, their result are not so shocking. After all, we have long known that microbial communities can (slowly) degrade plastic in landfills, over many years. However, it had been previously thought that the ocean gyres were too nutrient-poor to sustain substantial bacterial colonies. Therefore, the group’s findings help shed light on what has been a rather intriguing puzzle to scientists.

Scanning electron micrograph of the same sheet of plastic shown above reveals millions of plastic-eating bacteria

Of course, all scientists know that by answering one question, hundreds more arise. Most importantly, currently no one knows what chemical compounds microbes degrade plastic into. They could be biologically benign compounds, or they could be toxic. Concentrated breakdown of plastic into toxic compounds in ocean gyre masses, or landfills, could spell eventual disaster for local ecological communities. Through biological magnification, toxins can be stored inside animals’ bodies. As prey is consumed at higher and higher levels up the food web, the largest predators end up with the highest concentrations of toxins – think the bald eagle and DDT. Then multiply the issue by the size of the Great Pacific Garbage Patch, which is swirling away inside the largest ecosystem on the planet.

Whatever scientists determine about the toxicity of the microbial degradation products of plastic, the rest of the conserved mass of floating plastic will still be there. If we continue our current plastic consumption as societies, then billions of micron-sized particles of human trash will continue to float in our oceans for decades or centuries, just flinking along while fish, whales, and seabirds consume them for dinner. Of course, we can also clearly see that preventative measures would have a profound effect here: if we actively reduce the mass of plastic entering the system while microbial degradation activity remains high, then the total mass of plastic in the oceanic gyres will also decrease. In other words, your actions today directly contribute to the health of our oceans in the future.

I urge you to think about consumption habits that you can change, like carrying a reusable water bottle instead of purchasing bottled water. I never go anywhere without my half-liter Nalgene. Also, you will be happy to know that the I Heart Tap Water campaign is well underway here at UC Berkeley. You can find campus water bottle filling stations on a Google map here.

It’s your choice. You can either let ocean microbes struggle to clean up our oceans for us, or you can actively prevent the contamination of our water with plastic debris by choosing to reduce your plastic consumption and recycling as much as possible.

PET bottles, Sink or Swim?

Read the below article and it got me thinking. What’s interesting is that PET (what bottles are made of) does not float…even if it fragments. The plastics that are swishing around in the Garbage patch are not PET bottles and a lot of people do not realize that. I definitely do not think that just because bottles, or PET sink, that that is not pollution because its still there. But there are SO many other products out there…medicine bottles, laundry bins, storage containers, scissor handles,trash cans,caps, product packaging, etc. why is always the “bottles” that get pointed out? I think its important for people to make changes in their habits/lifestyles to better the earth…but until companies make the decision to do so as well, a lot of us will find it almost impossible to avoid all of the plastic that we accumulate. We need solutions, that will work…no green washing…so companies and consumers can make the right decisions about the earth friendly products they will implement in their lives.

 

 

Plastic: It’s what’s for dinner

Posted by on August 19, 2011

Conservation of mass often applies to college-level physics problems: in a closed system, mass can neither be created nor destroyed. In the case of the Great Pacific Garbage Patch – a gigantic section of the ocean littered with an unusually high amount of man-made trash — the system is clearly not closed. Yet conservation of mass is almost precisely what we see, both in the Pacific and Atlantic Oceans: more than 20 years of waste plastic studies in these oceans have demonstrated that the garbage patches are neither growing in size nor shrinking. They have conserved their mass. While plastic production rates have skyrocketed, as well as human consumption of plastic-contained goods, the plastic masses in these oceanic gyres (very large circular current patterns spanning thousands of miles) are incontrovertibly the same now as they were in the 1980s.

 

Interesting. If the rate at which plastic enters the patch has increased while the total mass of the patch has remained constant, then there must have been a corresponding increase in the rate at which plastic leaves the patch, to balance. Some scientists have hypothesized that the depths of the oceans act as plastic “sinks” from which waste never returns. If this were true, huge collections of settled ocean plastic debris should be established across the world. But for all their efforts, scientists have not been able to locate such sinks. With no evidence to support the ocean sink hypothesis, researchers have been looking for alternative answers for decades. What they have recently found may surprise you.

In a recent article appearing in Nature News, marine chemist Tracy Mincer and colleagues at the Woods Hole Oceanographic Institution (WHOI) reported the observation of oceanic bacteria actively consuming bits of plastic recovered from ocean gyres. At a glance, their result are not so shocking. After all, we have long known that microbial communities can (slowly) degrade plastic in landfills, over many years. However, it had been previously thought that the ocean gyres were too nutrient-poor to sustain substantial bacterial colonies. Therefore, the group’s findings help shed light on what has been a rather intriguing puzzle to scientists.

Scanning electron micrograph of the same sheet of plastic shown above reveals millions of plastic-eating bacteria

Of course, all scientists know that by answering one question, hundreds more arise. Most importantly, currently no one knows what chemical compounds microbes degrade plastic into. They could be biologically benign compounds, or they could be toxic. Concentrated breakdown of plastic into toxic compounds in ocean gyre masses, or landfills, could spell eventual disaster for local ecological communities. Through biological magnification, toxins can be stored inside animals’ bodies. As prey is consumed at higher and higher levels up the food web, the largest predators end up with the highest concentrations of toxins – think the bald eagle and DDT. Then multiply the issue by the size of the Great Pacific Garbage Patch, which is swirling away inside the largest ecosystem on the planet.

Whatever scientists determine about the toxicity of the microbial degradation products of plastic, the rest of the conserved mass of floating plastic will still be there. If we continue our current plastic consumption as societies, then billions of micron-sized particles of human trash will continue to float in our oceans for decades or centuries, just flinking along while fish, whales, and seabirds consume them for dinner. Of course, we can also clearly see that preventative measures would have a profound effect here: if we actively reduce the mass of plastic entering the system while microbial degradation activity remains high, then the total mass of plastic in the oceanic gyres will also decrease. In other words, your actions today directly contribute to the health of our oceans in the future.

I urge you to think about consumption habits that you can change, like carrying a reusable water bottle instead of purchasing bottled water. I never go anywhere without my half-liter Nalgene. Also, you will be happy to know that the I Heart Tap Water campaign is well underway here at UC Berkeley. You can find campus water bottle filling stations on a Google map here.

It’s your choice. You can either let ocean microbes struggle to clean up our oceans for us, or you can actively prevent the contamination of our water with plastic debris by choosing to reduce your plastic consumption and recycling as much as possible.

 

 

Pepsi follows Green washed Consumers

This is a great article. Companies should be going with the best environmental packaging out there, not just what consumers believe is the best environmental packaging because they have suffered from greenwashing or a lack of access to the facts.  How amazing would it be to have a bottle made from renewable resources & with the ENSO additive. A renewable, biodegradable & recyclable bottle, that would be amazing.

Consumer preferences driving PepsiCo sustainability efforts

By Mike Verespej | PLASTICS NEWS STAFF 

Posted August 11, 2011

PURCHASE, N.Y. (Aug. 11, 12:40 p.m. ET) — For a brand owner like PepsiCo, sustainable packaging doesn’t just mean making decisions on a complex set of resource, energy and environmental issues. It also means that you have to understand and determine whether consumers will view what you do as sustainable.

“Everything needs to be in sync with the brand identity, and you have to ask yourself what is the right message so the consumer understands that what you are doing is sustainable,” said Denise Lefebvre, vice president of global packaging for food and beverage giant PepsiCo. “There already is confusion among the public about sustainability, so all our messages have to be clear, consistent and in sync.”

Lefebvre, who was director of advanced research for beverage packaging for the Purchase, N.Y., soft-drink giant until a recent promotion, also said that when it comes to sustainable packaging, much of what brand owners focus on is driven by “consumer desires and consumer thinking.”

“Consumers are looking for technologies and innovations where it is readily evident to them what to do with that product and how it benefits them and the environment,” Lefebvre said in a recent interview. “The benefit has to be clear to them and right in their sweet spot. Our messages give us an opportunity to simplify things for consumers.”

With that in mind, the company has focused on producing increasingly lightweight PET bottles, developing technology to make PET bottles from plant-based resources and agricultural and food waste, and putting Dream Machine recycling bins and kiosks into place in cities to increase the number of bottles and cans that are recycled, she said.

“When consumers see a bottle that is fully recyclable and ultra-lightweight, it helps them in terms of making their purchase,” Lefebvre said. “The consumer understands source reduction and the use of less material. It is tangible and they can understand that. So if we can create technologies to push that faster, that would be ideal.”

Similarly, consumer perceptions are one of the driving reasons why PepsiCo is working, in partnership with others, to make a PET bottle completely from plant-based materials, including switch grass, pine bark and corn husks.

“If I tell [consumers], it’s 100 percent renewable PET, they understand it and they get it because they want things straightforward,” Lefebvre said.

Since the firm announced in March that it had developed a 100 percent renewable bottle, it has received positive consumer feedback, she said — although that bottle won’t eat go into pilot production until sometime in 2012, and even then, in limited quantities of 100,000-500,000 bottles.

“Consumers like it because you have eliminated fossil-based products [and] they believe that pulling oil out of the ground” is not the route to use anymore, Lefebvre said.

PepsiCo is also working to make its planned renewable PET bottle from organic waste from its food businesses, including orange and potato peels, oat hulls and other agricultural byproducts.

“Consumers have made it clear that they want us to use non-food resources, or food or agricultural waste [for bioresins] because it doesn’t detriment the environment and it doesn’t take away from food supplies,” she said.

Although many of PepsiCo’s sustainability package initiatives are driven by consumer perceptions, the firm realizes it can’t do things that are not sustainable just because consumers perceive them to be, she said. “Consumers would love an oxo-biodegradable bottle,” Lefebvre said “But right now, the technologies out there would do more harm than good.

“So to deliver something that would be more detrimental to the environment … It would be wrong and it would be greenwashing.”

Similarly, PepsiCo is not using polylactic bioresin for bottles because she said the material does not have the necessary barrier properties and is problematic in the PET recycling stream.

During a presentation at the Bioplastek conference in New York in late June, Lefebvre said PepsiCo’s objective is to create “performance with a purpose” in its packaging.

“Our objective is to make a 100 percent renewable, sustainable, non-fossil-fuel-based PET bottle in a closed-loop system using agriculture waste,” she said. “We want performance identical to what we have now: a product that is fully recyclable and a product that significantly reduces the carbon footprint.”

A number of companies now make non-petroleum-based ethylene glycol — which is 30 percent of the formulation of PET. And roughly a half-dozen firm say that they have demonstrated in a lab that they can make paraxylene, the building block for terephthalic acid, which constitutes the rest of PET, or plant-based terephthalic acid.

PepsiCo’s main competitor, Coca-Cola Co., has been making its PlantBottle from conventional terephthalic acid and renewable ethylene glycol since December 2009. H.J. Heinz Co. also began using the Coca-Cola PlantBottle for its 20-ounce ketchup containers in July.

Heinz expects to sell 120 million PlantBottle ketchup bottles in 2011; Coca-Cola expects this year to package 5 billion beverages globally in 15 countries in the PlantBottle compared to 2.5 billion last year.

PepsiCo has not discussed technology details for making the renewable terephthalic acid needed for a PET bottle manufactured 100 percent from renewable resources.

“We can buy and source the renewable ethylene glycol from any number of sources,” Lefebvre said. “That has been around for awhile. The key is the T piece [terephthalic acid]. That is critical in driving a renewable PET bottle to a mass scale.”

PepsiCo plans to model several different types of chemistry in its pilot -cale project to determine their efficiency to make renewable terephthalic acid. “There are a lot of emerging technologies that we will be evaluating, and they all have their pros and cons,” she said. “We’re very open to looking at them all and would be comfortable using several of them,” she said.

“We don’t make PET. We’re not going to. So we need the quality to be right.”

Lefebvre said she expects PepsiCo to announce soon on its sourcing strategies for renewable PET bottles. None of those strategies, she said, mean the firm will reduce its efforts to boost recycling of its plastic bottles or aluminum cans.

Since it embarked on its Dream Machine recycling initiative in April 2010, PepsiCo has placed 2,600 Dream Machines bins and reverse-vending kiosks in more than 30 states — at supermarkets, on city streets and other public venues.

The recycling bins are similar to trash cans, but they’re painted Pepsi blue with a recycling message on them. The computerized kiosks give reward points for each bottle or can recycled, which consumers can redeem online at greenopolis.com. — a partner in the program along with Waste Management subsidiary WM GreenOps LLC.

PepsiCo has also developed a recycling initiative for schools, called Dream Machine Recycle Rally, which rewards schools with points for each non-alcoholic plastic bottle or aluminum can students bring to school for recycling.

“It is a self-supportive strategy,” Lefebvre said of the initiatives. “As the program proliferates, it reaffirms to the consumer that recycling is important, and that recycling is just as good as renewables.” The Dream Machines also help the firm bring up recycling rates and get the material it needs to incorporate recycled content in its products, she said.

Just last week, PepsiCo announced that in August it will market the first plastic soft drink bottle to be made from 100 recycled PET in North America. The bottle, 7UP EcoGreen, will be used for diet and regular 7UP sold in Canada. It is expected to reduce the amount of virgin PET used for that product by 6 million pounds a year.

“We want to use more recycled PET” in all plastic bottles, Lefebvre said. “It is a matter of obtaining the right quality and getting the material — which is in short supply. “

To augment PepsiCo’s supply of recycled PET, the firm last year agreed to buy the majority of its bottle-grade PET pellet and flake from the new CarbonLITE plant in Riverside, Calif., which is scheduled to launch by Sept. 30 with nameplate annual capacity of 100 million pounds.

Yale Students discover Plastic eating Organisms


This past week I had the most intriguing article show up in my Google alerts; Yale students find organisms to degrade polyurethane.  In a 2008 trip to Equador, Yale undergraduates discovered organisms in Amazon rainforests fungi that have shown the ability to degrade polyurethanes all by themselves. Endophytes collected by students were taken back to New Haven and were analyzed as well as tested for biological activity, ability to be used in bioremediation, and other possible uses. In a rudimentary test, student Pria Anad showed that a chemical reaction did take place when a endophyte was introduced to plastic. The great thing is that the enzyme identified by Yale students is able to degrade plastic without the presence of oxygen, which in the future I could see greatly benefiting landfills/plastic trash disposal. This could open the doors to an entirely new way to reduce all of the plastic waste the world has accumulated.

Foe ENSO this is not a terribly new concept. Our ENSO Biodegradable plastics additive was inspired by nature’s ability to breakdown plastic materials. By examining nature we have created a scenario inspired by the very concept of microbial digestion. The ENSO additive allows any plastic polymer to become degradable in a landfill. How have we made that possible? By adding our organic ENSO additive into standard plastic during the manufacturing process, the plastic will become recognizable by nature so that it will biodegrade (while keeping the same attributes of the original plastic.) When ENSO products are thrown away, the organic blend creates a perfect environment and food source for microbes in a landfill. As microbes consume the additive, they secrete enzymes. These enzymes break down the polymer chain into materials that are easily consumed by microbes. The end result is carbon dioxide, methane, and healthy, new soil.

 

Check out the original article about the Yale undergraduates fantastic discovery below!

 

Yale students find organisms to degrade polyurethane

Urethanes Technology International

Aug. 2 — Yale undergraduates have discovered organisms in Amazon Rainforest fungi which can degrade polyurethanes. The discovery, which is featured in the journal “Applied and Environmental Microbiology,” may lead to innovative ways to reduce waste in the world´s landfills, the university said in a press release.

The undergraduates were participating in Yale´s Rainforest Expedition and Laboratory course, funded by the Howard Hughes Medical Institute.

“This shows amazing things can happen when you let undergraduates be creative,” said Kaury Kucera, postdoctoral researcher in the department of molecular biophysics and biochemistry and co-instructor of the course.

Students collect endophytes found in rainforest plants and take them back to New Haven to test for biological activity and then analyze any that show biological activity to see what medical or other uses might be possible.

On the 2008 trip to Equador, student Pria Anand decided to see if the endophytes she collected could be used in bioremediation. In a rudimentary test, Anand showed a chemical reaction did take place when an endophyte she found was introduced to plastic.

Jeffrey Huang analyzed endophytes collected by other students on the 2008 trip to find those that broke down chemical bonds most efficiently.

Then Jon Russell discovered that one family of endophytes identified by Huang showed the most promise for bioremediation. Russell went on to identify the enzyme that most efficiently broke down polyurethane.

While other agents can degrade polyurethane, the enzyme identified by Yale students holds particular promise because it also degrades plastic in the absence of oxygen — a feature which the university points out is “a prerequisite for bioremediation of buried trash.”

 

What percentage of methane is collected in landfills?

I recently came across an article by James Levis called Collecting landfill gas good step. This article is a reaction to a paper that Levis co-wrote with Dr. Morton Barlaz titled “Is biodegradability a Desirable Attribute for Discarded Slid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model.” That very paper started the jumping off point for the sudden out spurt of biodegradable plastic methane emissions articles all over the web this summer.

Spinoff headlines ranging from  “Study: Biodegradable plastics can release methane” to the reckless “Biodegradable products are often worse for the planet” were at the forefront of attention.

I had reacted to such articles in a previous blog which you can read here but after reading Levis Collecting landfill gas good step article, I came across some statistics that I just had to share!

greenhouse gas emissions methane

Levis stated in the article “ The foundation of this research is a life-cycle accounting of the greenhouse gas (GHG) emissions associated with discarding waste in both national-average and sate of the art landfills”    Now here is some interesting information,

An estimated..

35% of waste is discarded in state of the art landfills which collect generated methane and use it in beneficial ways

31% of waste is left in landfills without any gas collection occurring

34% of the waste is in landfills that collect and flare the gas

lanfill

The results of the research showed that there are significant benefits to collecting and beneficially using landfill gas. Levis addressed reactions to the research, one of the most common comments being “these materials are intended to be composted, therefore the results are irrelevant.” Levis reacted to the response by stating, “But these materials are generally not composted, and most areas of the country do not have the infrastructure for source-separated compostable collection and treatment of these emerging biodegradable materials. Therefore we need to understand the effect of their disposal in a landfill.”

Another common response to the research included that the conclusions were too broad, that they neglected emerging materials like bioplastics that do not appreciably degrade in landfills. Levis responded by stating that the argument seems misguided because these types of materials are not even technically biodegradable and the study’s only mention of bio-based, non biodegradable products was to say that it would lead to green house gas emissions in a landfill.  Levis closed the article by stressing the importance of analyzing the entire life cycle of a product to know if it is better to use a conventional or biodegradable material in the production, as well as environmental and economic factors, before making your final judgment.

What Is Industrial Farming Doing to Our World’s Oceans?

 

Christopher George- Aquatic Biologist
Tampa, FL

I just finished watching the movie Dirt a film that (among other concepts) shows viewers the negative impacts of industrial farming practices and it really got me thinking….

dirt the movie

Living on Florida’s gulf coast, from time to time the Tampa Bay Area is plagued by the infamous red tide. For those of you not familiar, red tide is created primarily by excess fertilizers used in farming that runoff into rivers and streams. These fertilizers eventually end up in coastal areas. The excess nutrients become a food source for phytoplankton to feed on, creating massive algae blooms in high concentration that leaves red colored trails in the water.

red tide in florida

As the algae blooms die, microorganisms feed on the algae and deplete the dissolved oxygen levels in the water. Fish and other submarine life perish without vital oxygen. Also, one species of algae often associated with red tide produces neurotoxins that can be harmful to birds, humans, and other land animals. Red tide creates polluted beaches, full of dead fish and makes swimming and beach activities unsafe.

fish dead from red tide

After thinking about all of this, my mind  really started turning…With all of the concerns about the methane emissions of biodegradable plastics, what about the excess of fertilizers used when farming corn, is anyone concerned with how that will effect the earth/waters? Is there any fix that doesn’t have any faults? Does the spread of  articles on the internet that misguide readers give us a sense of false concerns ?  ( See my Is the methane released from biodegradable plastic harmful? Blog )

These are all things to  definitely  think about and talk about!  Make sure to leave any of your thoughts in the comment box below, I look forward to this dicsussion!

-Megan Bentley

 

 

 

 

Thanks for the photo

http://lauraweitnauer.blogspot.com/2010/09/urls.html

Mesa man makes eco-friendly plastic bottles

Danny Clark’s idea was simple: If he could make plastic water bottles biodegradable, it would reduce the impact on landfills, curb roadside litter and reduce the amount of plastic garbage that eventually washes into the oceans.

Danny Clark, President - ENSO BottlesBut the Mesa, Ariz., man’s venture has run into opposition from a large and unexpected source: the $400 billion recycling industry, which fears that making plastic bottles biodegradable will reduce the stream of plastic refuse used to make everything from carpet to clothing to new bottles. In addition, the industry fears that changing the makeup of plastic bottles could make it more difficult to recycle them.

With plastic-bottle sales already slowing and only a small amount being recycled, the industry is meeting threats to its profits head-on, actively campaigning against attempts by companies like Clark’s to make bottles biodegradable.

Billions of plastic bottles, which take millions of barrels of oil to produce, appear on supermarket shelves every year, according to the U.S. Energy Information Administration. Only about 28% of bottles manufactured in the U.S. end up being recycled, the Association of Postconsumer Plastic Recyclers said.

The other 72% wind up in landfills or as litter. Environmentalists point to a phenomenon known as the “Great Pacific Garbage Patch,” a floating island of discarded plastic debris that is twice the size of Texas and held together by swirling ocean currents, as an example of the proliferation of plastic pollution.

Clark, who said he is trying to leave “a legacy that we’ve done something positive in the environment,” was inspired to quit his job as a communications engineer to form a team of microbiologists and polymer chemists to develop his bottle technology three years ago.

“Bottles are a big issue. It’s talked about, and it’s pretty visible,” Clark said.

He launched his start-up, Enso Bottles, in 2008 and says he has come up with a truly biodegradable and recyclable polyethylene terephthalate, or PET, plastic bottle.

PET is used to make a wide range of products, particularly packaging containers for consumer goods, such as water and soda bottles. Traditional plastic PET bottles can take hundreds of years to break into smaller pieces, but those pieces never actually decompose.

Clark’s company produces an additive used in the plastic-manufacturing process and says on its website that independent testing data show bottles start to biodegrade in as little as 250 days in a controlled environment or as long as five years in the elements. In addition, Clark’s data show that the additive doesn’t diminish the quality or effectiveness of the plastic, he says.

Clark said that technologies allowing plastics to biodegrade have been around for several decades but had not been applied to PET bottles.

Recycling-industry experts have concerns about Enso’s biodegradable efforts, saying they are not convinced the technology works, but they also worry that if it does, it will damage their business.

Dennis Sabourin of the National Association for PET Container Resources said the association is not in favor of anything that disrupts that recycled-product stream.

“We want to make sure it does not affect the raw material,” Sabourin said. “Does it affect the service life of products that are being made today with (PET bottles)?”

More than a year ago, the association sent out a news release to all PET manufacturers asking them to refrain from using biodegradable additives. The experts say biodegradable products are more difficult and costly to recycle than PET bottles.

David Cornell of the Association of Postconsumer Plastic Recyclers said Enso has tried to convince them that the biodegradable additive will not hurt their business, but the recycling industry still fears it poses a threat.

“So far, we haven’t seen that it does degrade or is not hostile to recycling. If it doesn’t degrade, then who wants it? If it does degrade, what does it do to recycling?”

Cornell credits Enso for trying to solve a problem and said that, unlike some other companies, Enso has tried to work with the industry and communicate about product tests.

“They’re working on it. I will give them credit,” Cornell said.

by Angelique Soenarie
The Arizona Republic

View article on USA Today
View article on Arizona Republic

Debunking the Myths of the Paper vs. Plastic Debate, Part II

Photo by eco-wisdom

Last week, we weighed in on the Paper vs. Plastic Debate, and examined the pros and cons of each where waste, energy, and resources are concerned. This week, we’ll take a look at how the contenders fare when it comes to pollution and recycling.

Pondering Pollution

Myth #3: Plastic is man-made and chemical-based, so it’s better to choose paper.

When it comes to pollution, plastic has become the chosen whipping boy, but in fact, craft paper production requires huge amounts of chemicals, that end up in our rivers each year, and are released into the air contributing to air pollution. Plastic production generates about 60% fewer greenhouse gases than turning wood pulp into paper bags.

Let’s consider PLA. It’s been touted as a panacea for the plastic problem, because it’s compostable, and comes from a renewable resource. But upon closer examination, unless the corn crop is grown organically, it still requires fossil fuel-based fertilizers and chemicals that cause other environmental problems and does not reduce our dependency on oil. In fact, one study found that the production of corn- and other bio-based plastics actually use more fossil fuels than a standard PET plastic. PLA isn’t as eco-friendly as it seems.

When it comes to waste and pollution, the frontrunner so far is the bag made from biodegradable plastic.

Reconsidering Recycling

Myth #4: It’s easier to recycle paper, so it’s the more sustainable choice.

Photo by greennature.com

In reality, it is more efficient to recycle plastic, requiring about 91% less energy pound for pound than paper, but the sad truth is that the recycling track record for either bag isn’t good. Only about 10-15% of paper bags, and just 1-3% of plastic bags are recycled; although paper bags have a higher recycle rate than plastic, every new paper bag is made from virgin pulp instead of recycled fibers for better strength, while many plastic bags are made from once-recycled plastic polymers.

PLA and other bio-plastics get another strike when it comes to recyclability. They cannot be recycled with regular plastics, but so often are, creating an expensive problem of having to sort them from the rest of the plastics.

Plastics that are biodegradable in the landfill and under natural conditions, like ENSO’s products, are recyclable with conventional plastics, and do not contaminate the recycling stream.

The Bottom Line

Choosing paper or plastic is still a tough decision because biodegradable plastics are not yet mainstream. The biodegradable disposable bag is the best solution because it can be recycled if that’s an option, or thrown into the landfill where it will biodegrade in a relatively short amount of time. In addition, the industry is moving toward renewable sources, like algae, for plastic production, improving biodegradable plastics even further. For now, bring your reusable bags, or choose a plastic bag and reuse it or recycle it, and keep up with latest developments on the biodegradable plastics front.